深度学习之TensorFlow构建神经网络层 基本法 深度神经网络是一个多层次的网络模型,包含了:输入层,隐藏层和输出层,其中隐藏层是最重要也是深度最多的,通过TensorFlow,python代码可以构建神经网络层函数,比如我们称之为add_layer()函数,由于神经网络层的工作原理是一层的神经元处理完成后得到一个结果,然后传递给下一个神经元,这就类似于函数的return与参数变量,所以最终代码的模型应该如下图所示: 通过add_layer的层层嵌套,实现上一个add_layer的结果返回给…
紧接着上一篇的文章<深度学习(TensorFlow)环境搭建:(二)Ubuntu16.04+1080Ti显卡驱动>,这篇文章,主要讲解如何安装CUDA+CUDNN,不过前提是我们是已经把NVIDIA显卡驱动安装好了 一.安装CUDA CUDA(Compute Unified Device Architecture),是英伟达公司推出的一种基于新的并行编程模型和指令集架构的通用计算架构,它能利用英伟达GPU的并行计算引擎,比CPU更高效的解决许多复杂计算任务,想使用GPU就必须要使用CUDA.…
[原创 深度学习与TensorFlow 动手实践系列 - 4]第四课:卷积神经网络 - 高级篇 提纲: 1. AlexNet:现代神经网络起源 2. VGG:AlexNet增强版 3. GoogleNet:多维度识别 4. ResNet:机器超越人类识别 5. DeepFace:结构化图片的特殊处理 6. U-Net:图片生成网络 7. 实例:剖析VGG,用模型进行模型参数可视化,特征提取,目标预测 期待目标: 1. 掌握AlexNet结构特点,神经网络各层之间特征传导关系,模型参数总数计算 2…
[原创 深度学习与TensorFlow 动手实践系列 - 3]第三课:卷积神经网络 - 基础篇 提纲: 1. 链式反向梯度传到 2. 卷积神经网络 - 卷积层 3. 卷积神经网络 - 功能层 4. 实例:卷积神经网络MNIST分类 期待目标: 1. 清楚神经网络优化原理,掌握反向传播计算. 2. 掌握卷积神经网络卷积层的结构特点,关键参数,层间的连接方式. 3. 了解不同卷积神经网络功能层的作用,会进行简单的卷积神经网络结构设计. 4. 能够运行TensorFlow卷积神经网络 MNIST. …
下载:https://pan.baidu.com/s/1qKaDd9PSUUGbBQNB3tkDzw <机器学习实战:基于Scikit-Learn和TensorFlow>高清中文版PDF+高清英文版PDF+源代码 下载:https://pan.baidu.com/s/1IAfr-tigqGE_njrfSATT_w <深度学习之TensorFlow:入门.原理与进阶实战>,李金洪 著. 下载:https://pan.baidu.com/s/1NYYpsxbWBvMn9U7jvj6XS…
前几天把刚拿到了2台GPU机器组装好了,也写了篇硬件配置清单的文章——<深度学习(TensorFlow)环境搭建:(一)硬件选购和主机组装>.这两台也在安装Ubuntu 16.04和1080Ti显卡驱动,在安装Ubuntu的时候,踩过无数个坑,心力憔悴(...(。•ˇ‸ˇ•。)…),因此将踩过的坑以及对于的解决方案汇总出来,让大家少踩那些坑,过程实在是太磨人了. 一.配置 系统:Ubuntu16.04.3 GPU:GTX1080Ti 二.总体流程步骤 安装Ubuntu16.04 安装1080T…
一.硬件采购 近年来,人工智能AI越来越多被人们所了解,尤其是AlphaGo的人机围棋大战之后,机器学习的热潮也随之高涨.最近,公司采购了几批设备,通过深度学习(TensorFlow)来研究金融行业相关问题,学习机器学习我们需要满足一定的硬件要求,本文主要是介绍硬件选购的相关事宜. 现在主力的深度学习都是通过多显卡计算来提升系统的计算能力,所以硬件的采购核心是显卡(GPU),下面是整个硬件采购的清单及大致费用如下: 以上的配置一台设备的总共费用大致:2.8W左右.公司购买了2台,费用大致6W,两…
创建图.启动图 Shift+Tab Tab 变量介绍: F etch Feed 简单的模型构造 :线性回归 MNIST数据集 Softmax函数 非线性回归神经网络   MINIST数据集分类器简单版本 二次代价函数 sigmoid函数 交叉熵代价函数 对数释然代价函数 拟合 防止过拟合 Dropout 优化器 优化器的使用 如何提升准确率? 1.改每批训练多少个 2.改神经网络中间层(神经元层数,每层的个数,每层用的激活函数,权重的初值用随机正态.要不要防止过拟合) 3.改计算loss的函数:…
转发——谷歌云官方:一小时掌握深度学习和 TensorFlow 本文转发自新智元,链接如下: http://mp.weixin.qq.com/s?__biz=MzI3MTA0MTk1MA==&mid=2651992687&idx=2&sn=ac773db1f79828bde0656dd3a6c5fe72&chksm=f121469ec656cf882e44d8fde168987f97bd72ea56c8cb2140842cfdd42bab30c3ae9b73e3e5&…
前言 如果你是一个完美主义者,那么请绕过此文,请参考<深度学习篇——Tensorflow配置(完美主义模式)> 安装 pip install tensorflow ok,只要不报错,安装就完成了,就可以用了. 错误填坑(不断更新) 1.pip错误:TypeError: parse() got an unexpected keyword argument 'transport_encoding' 解决办法:输入命令 conda install -c anaconda html5lib 然后 co…
TensorFlow是一个采用数据流图(data flow graphs),用于数值计算的开源软件库,说白了,就是一个库. 小编自己在Ubuntu搭建了深度学习框架TensorFlow,感觉挺简单,现在总结如下. 1.安装Anaconda 在ubuntu系统版本的Anaconda3已经集成了3.6版本的Python,安装步骤如下: a.下载Anoconda3 b.安装:以下操作在系统终端执行 输入yes: 默认安装位置 将Anconda的安装路径添加到环境变量中去,点yes,然后静静等待安装.…
深度学习之TensorFlow安装与初体验 学习前 搞懂一些关系和概念 首先,搞清楚一个关系:深度学习的前身是人工神经网络,深度学习只是人工智能的一种,深层次的神经网络结构就是深度学习的模型,浅层次的神经网络结构是浅度学习的模型. 浅度学习:层数少于3层,使用全连接的一般被认为是浅度神经网络,也就是浅度学习的模型,全连接的可能性过于繁多,如果层数超过三层,计算量呈现指数级增长,计算机无法计算到结果,所以产生了深度学习概念 深度学习:层数可以有很多层,但是并不是全连接的传递参数,如上图中右边是一个…
深度学习与TensorFlow DNN(深度神经网络算法)现在是AI社区的流行词.最近,DNN 在许多数据科学竞赛/Kaggle 竞赛中获得了多次冠军. 自从 1962 年 Rosenblat 提出感知机(Perceptron)以来,DNN 的概念就已经出现了,而自 Rumelhart.Hinton 和 Williams 在 1986 年发现了梯度下降算法后,DNN 的概念就变得可行了.直到最近 DNN 才成为全世界 AI/ML 爱好者和工程师的最爱. 主要原因在于现代计算能力的可用性,如 GP…
深度学习调用TensorFlow.PyTorch等框架 一.开发目标目标 提供统一接口的库,它可以从C++和Python中的多个框架中运行深度学习模型.欧米诺使研究人员能够在自己选择的框架内轻松建立模型,同时也简化了这些模型的产品离子化. 支持TensorFlow.PyTorch.TorchScript和Keras等深度学习框架. 使用一个API从任何支持的框架运行模型,运行TensorFlow模型看起来就像运行PyTorch模型. x = np.array([1, 2, 3, 4]) y =…
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_189 笔者投入M1的怀抱已经有一段时间了,俗话说得好,但闻新人笑,不见旧人哭,Intel mac早已被束之高阁,而M1 mac已经不能用真香来形容了,简直就是"香透满堂金玉彩,扇遮半面桃花开!",轻抚M1 mac那滑若柔荑的秒控键盘,别说996了,就是007,我们也能安之若素,也可以笑慰平生.好了,日常吹M1的环节结束,正所谓剑虽利,不厉不断,材虽美,不学不高.本次我们尝试在M1 Mac os 中搭建Python3的…
作者:王嘉俊 王婉婷 TensorFlow 是 Google 第二代深度学习系统,今天宣布完全开源.TensorFlow 是一种编写机器学习算法的界面,也可以编译执行机器学习算法的代码.使用 TensorFlow 编写的运算可以几乎不用更改,就能被运行在多种异质系统上,从移动设备(例如手机和平板)到拥有几百台的机器和几千个 GPU 之类运算设备的大规模分布式系统. TensorFlow 降低了深度学习的使用门槛,让从业人员能够更简单和方便地开发新产品.作为Google 发布的“平台级产品”,很多…
注:在很长一段时间,MNIST数据集都是机器学习界很多分类算法的benchmark.初学深度学习,在这个数据集上训练一个有效的卷积神经网络就相当于学习编程的时候打印出一行“Hello World!”.下面基于与MNIST数据集非常类似的另一个数据集Fashion-MNIST数据集来构建一个卷积神经网络. 0. Fashion-MNIST数据集 MNIST数据集在机器学习算法中被广泛使用,下面这句话能概况其重要性和地位: In fact, MNIST is often the first data…
注:因为毕业论文需要用到相关知识,借着 TF 2.0 发布的时机,重新捡起深度学习.在此,也推荐一下优达学城与 TensorFlow 合作发布的TF 2.0入门课程,下面的例子就来自该课程. 原文发布于博客园:https://www.cnblogs.com/Belter/p/10626418.html 本文中所有代码都在文末第二个链接中,转载请注明出处! 机器学习与深度学习 深度学习是机器学习的一个分支,当下也是该领域发展最快.最受关注的一个分支.上周刚刚公布的2018年图灵奖就颁发给了对深度学…
第二课 传统神经网络 <深度学习>整体结构: 线性回归 -> 神经网络 -> 卷积神经网络(CNN)-> 循环神经网络(RNN)- LSTM 目标分类(人脸识别,物品识别,场景识别,文字识别),目标检测(安防,自动驾驶),视频分类(视频检索),语句生成(自动翻译,智能对话) 提纲: 1. 神经网络起源:线性回归 2. 从线性到非线性 3. 神经网络的构建 4. 神经网络的“配件”  期待目标: 1. 了解从线性到非线性回归的转化 2. 明白如何构建神经网络,了解不同激励函数的…
最近一直在研究机器学习,看过两本机器学习的书,然后又看到深度学习,对深度学习产生了浓厚的兴趣,希望短时间内可以做到深度学习的入门和实践,因此写一个深度学习系列吧,通过实践来掌握<深度学习>和 TensorFlow,希望做成一个系列出来,加油! 学习内容包括了: 1. 小象学院的<深度学习>课程 2. TensorFlow的官方教程 3. 互联网上跟深度学习相关的教程 整个深度学习,学习的过程是通过一条主线串联起来的,这个知识结构总结的还是蛮好的. 1. 线性回归 - 线性回归是基础…
人工智能,用计算机实现人类智能.机器通过大量训练数据训练,程序不断自我学习.修正训练模型.模型本质,一堆参数,描述业务特点.机器学习和深度学习(结合深度神经网络). 传统计算机器下棋,贪婪算法,Alpha-Beta修剪法配合Min-Max算法.AlphaGo,蒙特卡洛树搜索法(Monte Carlo tree search,MCTS)和深度卷积神经网络(deep convolutional neural network,DCNN).估值网络(value network,盘面评估函数),计算盘面分…
一.目前主流的深度学习框架Caffe, TensorFlow, MXNet, Torch, Theano比较 库名称 开发语言 速度 灵活性 文档 适合模型 平台 上手难易 Caffe c++/cuda 快 一般 全面 CNN 所有系统 中等 TensorFlow c++/cuda/Python 中等 好 中等 CNN/RNN Linux, OSX 难 MXNet c++/cuda 快 好 全面 CNN 所有系统 中等 Torch c/lua/cuda 快 好 全面 CNN/RNN linux,…
什么是TensorFlow TensorFlow是谷歌在去年11月份开源出来的深度学习框架.开篇我们提到过AlphaGo,它的开发团队DeepMind已经宣布之后的所有系统都将基于TensorFlow来实现.TensorFlow一款非常强大的开源深度学习开源工具.它可以支持手机端.CPU.GPU以及分布式集群.TensorFlow在学术界和工业界的应用都非常广泛.在工业界,基于TensorFlow开发的谷歌翻译.谷歌RankBrain等系统都已经上线.在学术界很多我在CMU.北大的同学都表示Te…
分析一下 TensorFlow 的文件结构.这里的源代码版本是 TensorFlow1.7.0 . 目录结构如下: 其中的核心目录是 tensorflow 目录,最重要的源代码保存在这里,目录结构如下: 1.contrib 目录中保存的是将常用的功能封装成的高级 API,但是这个目录并不是官方支持的,很有可能在高级 API 完善后被官方迁移到核心的 TensorFlow 目录中或去掉. 2.core 目录中保存的都是 C 语言文件,是 TensorFlow 的原始实现. 3.examples 目…
1.TensorFlow 简介:TensorFlow 是谷歌公司开发的深度学习框架,也是目前深度学习的主流框架之一. 2.TensorFlow 环境的准备: 本人使用 macOS,Python 版本直接使用 anaconda 的集成包,我们使用 anaconda 来管理环境,为 TensorFlow 创建独立的 Python 环境. 创建一个名为 tensorflow 的 Python 环境: conda create --name tensorflow python=3.6 激活环境: sou…
欢迎访问网易云社区,了解更多网易技术产品运营经验. 这个双十一,人工智能市场火爆,从智能音箱到智能分拣机器人,人工智能已逐渐渗透到我们的生活的方方面面.网易云社区联合博文视点为大家带来人工智能热门图书专场,这些书籍将引领我们一起去解密人工智能,了解这位即将走进我们生活的"朋友". 知乎活动的帖子:https://zhuanlan.zhihu.com/p/50078535 参与规则:在知乎帖子评论回复以下你最想看的一本书名称即可.注意是知乎帖子回复,不是本帖回复哦 以下为奖品图书简介:…
[TensorFlow] ——( https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/) 1.TensorFlow是啥? ——TensorFlow是Google开发的一款神经网络的Python外部的结构包,也是一个采用数据流图来进行数值计算的开源软件库.TensorFlow 让我们可以先绘制计算结构图, 也可以称是一系列可人机交互的计算操作, 然后把编辑好的Python文件 转换成 更高效的C++,并在后端进行计算…
Generative Adversarial Network 是深度学习中非常有趣的一种方法.GAN最早源自Ian Goodfellow的这篇论文.LeCun对GAN给出了极高的评价: “There are many interesting recent development in deep learning…The most important one, in my opinion, is adversarial training (also called GAN for Generativ…
转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 全连接神经网络 辅助阅读:TensorFlow中文社区教程 - 英文官方教程 代码见:full_connect.py Linear Model 加载lesson 1中的数据集 将Data降维成一维,将label映射为one-hot encoding def reformat(dataset, labe…
初学者的时间大部分浪费在了环境上了: 建议直接上Linux系统,我推荐国产的深度系统,deepin这几年一直在不断的发展,现在15.4已经很不错了 1,图形化界面很漂亮,内置正版crossover,并且做了优化.可以不用折腾的安装日常使用的软件,很是节约时间,不玩游戏的话可以放弃Windows了. 2,配置好系统后要备份好系统,尤其是新手,系统总是坏 Python环境下安装TensorFlow比较麻烦,Linux还要解决各种依赖问题: 建议使用开源的Python发行版本,自动解决依赖问题,可设置…