Python Machine Learning-Chapter4】的更多相关文章

Python机器学习介绍(Python Machine Learning 中文版) 机器学习,如今最令人振奋的计算机领域之一.看看那些大公司,Google.Facebook.Apple.Amazon早已展开了一场关于机器学习的军备竞赛.从手机上的语音助手.垃圾邮件过滤到逛淘宝时的物品推荐,无一不用到机器学习技术. 如果你对机器学习感兴趣,甚至是想从事相关职业,那么这本书非常适合作为你的第一本机器学习资料.市面上大部分的机器学习书籍要么是告诉你如何推导模型公式要么就是如何代码实现模型算法,这对于零…
1. scikit-learn介绍 scikit-learn是Python的一个开源机器学习模块,它建立在NumPy,SciPy和matplotlib模块之上.值得一提的是,scikit-learn最先是由David Cournapeau在2007年发起的一个Google Summer of Code项目,从那时起这个项目就已经拥有很多的贡献者了,而且该项目目前为止也是由一个志愿者团队在维护着. scikit-learn最大的特点就是,为用户提供各种机器学习算法接口,可以让用户简单.高效地进行数…
I am using pybrain on my Linuxmint 13 x86_64 PC. As what it is described: PyBrain is a modular Machine Learning Library for Python. Its goal is to offer flexible, easy-to-use yet still powerful algorithms for Machine Learning Tasks and a variety of p…
这是一篇翻译的博客,原文链接在这里.这是我看的为数不多的介绍scikit-learn简介而全面的文章,特别适合入门.我这里把这篇文章翻译一下,英语好的同学可以直接看原文. 大部分喜欢用Python来学习数据科学的人,应该听过scikit-learn,这个开源的Python库帮我们实现了一系列有关机器学习,数据处理,交叉验证和可视化的算法.其提供的接口非常好用. 这就是为什么DataCamp(原网站)要为那些已经开始学习Python库却没有一个简明且方便的总结的人提供这个总结.(原文是cheat…
Python机器学习 机器学习,如今最令人振奋的计算机领域之一.看看那些大公司,Google.Facebook.Apple.Amazon早已展开了一场关于机器学习的军备竞赛.从手机上的语音助手.垃圾邮件过滤到逛淘宝时的物品推荐,无一不用到机器学习技术. 如果你对机器学习感兴趣,甚至是想从事相关职业,那么这本书非常适合作为你的第一本机器学习资料.市面上大部分的机器学习书籍要么是告诉你如何推导模型公式要么就是如何代码实现模型算法,这对于零基础的新手来说,阅读起来相当困难.而这本书,在介绍必要的基础概…
目录部分: 第一章:赋予计算机从数据中学习的能力 第二章:训练简单的机器学习算法——分类 第三章:使用sklearn训练机器学习分类器 第四章:建立好的训练集——数据预处理 第五章:通过降维压缩数据 第六章:学习模型评估和超参数调节的最佳实践 第七章:结合不同的模型——集成学习 第八章:实际应用机器学习于情感分析 第九章:将机器学习模型嵌入到Web应用 第十章:使用回归分析预测连续目标变量 第十一章:处理无标记数据——聚类分析 第十二章:从头开始实现一个多层人工神经网络 第十三章:使用Tenso…
Getting started with machine learning in Python Machine learning is a field that uses algorithms to learn from data and make predictions. Practically, this means that we can feed data into an algorithm, and use it to make predictions about what might…
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machine Learning (by Hastie, Tibshirani, and Friedman's ) 2.Elements of Statistical Learning(by Bishop's) 这两本是英文的,但是非常全,第一本需要有一定的数学基础,第可以先看第二本.如果看英文觉得吃力,推荐看一下下面…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室 Jurgen Schmidhuber 写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从 1940 年开始讲起,到…