样本失衡会对SVM的影响】的更多相关文章

假设正类样本远多于负类 1.线性可分的情况 假设真实数据集如下: 由于负类样本量太少,可能会出现下面这种情况 使得分隔超平面偏向负类.严格意义上,这种样本不平衡不是因为样本数量的问题,而是因为边界点发生了变化 2.线性不可分的情况 源数据以及理想的超平面情况如下: 很可能由于负类样本太少出现以下这种情况,超平面偏向负类 解决不平衡的方案: [SVM对不平衡本身并不十分敏感] [SVM的超平面只与支持向量有关,因此原离决策超平面的数据的多少并不重要] 1.过抽样(随机过抽样) 2.欠抽样(对多数类…
1.为什么要选择最大间隔分类器,请从数学角度上说明? 答:几何间隔与样本的误分次数间存在关系: 其中的分母就是样本到分类间隔距离,分子中的R是所有样本中的最长向量值 2.样本失衡会对SVM的结果产生影响吗? 答:会,超平面会靠近样本少的类别.因为使用的是软间隔分类,而如果对所有类别都是使用同样的惩罚系数, 则由于优化目标里面有最小化惩罚量,所以靠近少数样本时,其惩罚量会少一些.  比如:假设理想的分隔超平面是大样本中有很多数据到该超平面的函数距离是小于1的, 而小样本中是只有少数样本的函数距离小…
支持向量机(Support Vector Machine, SVM)是一种二分类模型.给定训练集D = {(x1,y1), (x2,y2), ..., (xm,ym)},分类学习的最基本的想法即是找到一个超平面S:,从而将训练集D的样本空间中不同类别的样本区分开. SVM的模型,由简至繁地,包括:线性可分支持向量机(linear SVM in linearly separable case).线性支持向量机(linear SVM)以及非线性支持向量机(non-linear SVM). 当训练数据…
假设我们要判断一个人是否得癌症,比如下图:红色得癌症,蓝色不得. 看一下上图,要把红色的点和蓝色的点分开,可以画出无数条直线.上图里黄色的分割更好还是绿色的分割更好呢?直觉上一看,就是绿色的线更好.对吧. 为啥呢?考虑下图,新来了一个黑色点,明显靠蓝色点更近,如果用黄线分割,却把它划分到了红色点这个类别里. 现在细想一下为什么绿线比黄线分隔效果更好? 黄色线太贴近蓝色点 绿色线到红色点群和蓝色点群距离大致相等.恰好位于两个点群中间的位置 由此我们就引申出了SVM的理论基础:使得距离决策边界最近的…
1. SVM的最优化问题 2.拉格朗日乘数法,对偶条件KKT条件 3.软件隔支持向量机 4.非线性支持向量机,核函数 5.SMO算法 1. SVM的最优化问题 支持向量机(Support Vector Machine, SVM)的基本模型是在特征空间上找到最佳的分离超平面使得训练集上正负样本间隔最大.SVM是用来解决二分类问题的有监督学习算法,在引入了核方法之后SVM也可以用来解决非线性问题. 一般SVM有下面三种: 硬间隔支持向量机(线性可分支持向量机):当训练数据线性可分时,可通过硬间隔最大…
http://ju.outofmemory.cn/entry/119152 http://www.cnblogs.com/zhizhan/p/4412343.html 支持向量机SVM是从线性可分情况下的最优分类面提出的.所谓最优分类,就是要求分类线不但能够将两类无错误的分开,而且两类之间的分类间隔最大,前者是保证经验风险最小(为0),而通过后面的讨论我们看到,使分类间隔最大实际上就是使得推广性中的置信范围最小.推广到高维空间,最优分类线就成为最优分类面. 支持向量机是利用分类间隔的思想进行训练…
依据机器学习算法如何学习数据可分为3类:有监督学习:从有标签的数据学习,得到模型参数,对测试数据正确分类:无监督学习:没有标签,计算机自己寻找输入数据可能的模型:强化学习(reinforcement learning):计算机与动态环境交互,学习错误反馈达到更优的目的. 依据机器学习期望结果来分类:分类:输入被分为N个类别的一种:回归:输出是连续值:如依据房子的大小,时间,位置来预测房子的价格:聚类:使用无监督学习将输入聚为N类:密度估计(density estimation):找到输入可能的分…
转自:3.4 解决样本类别分布不均衡的问题 | 数据常青藤 (组织排版上稍有修改) 3.4 解决样本类别分布不均衡的问题 说明:本文是<Python数据分析与数据化运营>中的“3.4 解决样本类别分布不均衡的问题”. -----------------------------下面是正文内容-------------------------- 所谓的不平衡指的是不同类别的样本量异非常大.样本类别分布不平衡主要出现在分类相关的建模问题上.样本类别分布不均衡从数据规模上可以分为大数据分布不均衡和小数…
SVM问题再理解与分析--我的角度 欢迎关注我的博客:http://www.cnblogs.com/xujianqing/ 支持向量机问题 问题先按照几何间隔最大化的原则引出他的问题为 上面的约束条件就是一个不等式约束, 可以写成 这个是SVM的基本型 对它引入拉格朗日乘子,即对上式添加拉格朗日乘子该问题的拉格朗日函数可以写成: 对偶问题 先定义一个概念:Wolfe对偶:定义问题是凸优化问题的对偶 再定义一个概念:约束规格: 考虑一般约束问题 在式(6)的可行域,在这个约束函数都是可微函数,引进…
SVM 的英文叫 Support Vector Machine,中文名为支持向量机.它是常见的一种分类方法,在机器学习中,SVM 是有监督的学习模型. 什么是有监督的学习模型呢?它指的是我们需要事先对数据打上分类标签,这样机器就知道这个数据属于哪个分类.同样无监督学习,就是数据没有被打上分类标签,这可能是因为我们不具备先验的知识,或者打标签的成本很高.所以我们需要机器代我们部分完成这个工作,比如将数据进行聚类,方便后续人工对每个类进行分析.SVM 作为有监督的学习模型,通常可以帮我们模式识别.分…
转自:https://zhuanlan.zhihu.com/p/21932911?refer=baina 参考:http://www.cnblogs.com/LeftNotEasy/archive/2011/05/02/basic-of-svm.html http://blog.csdn.net/v_july_v/article/details/7624837 SVM(支持向量机)主要用于分类问题,主要的应用场景有字符识别.面部识别.行人检测.文本分类等领域. 通常SVM用于二元分类问题,对于多…
http://www.cnblogs.com/jerrylead/archive/2011/03/18/1988406.html http://blog.pluskid.org/?p=685 考虑我们最初在“线性回归”中提出的问题,特征是房子的面积x,这里的x是实数,结果y是房子的价格.假设我们从样本点的分布中看到x和y符合3次曲线,那么我们希望使用x的三次多项式来逼近这些样本点.那么首先需要将特征x扩展到三维,然后寻找特征和结果之间的模型.我们将这种特征变换称作特征映射(feature map…
1. SVM 原理 SVM 是一种二类分类模型.它的基本思想是在特征空间中寻找间隔最大的分离超平面使数据得到高效的二分类,具体来讲,有三种情况(不加核函数的话就是个线性模型,加了之后才会升级为一个非线性模型): 当训练样本线性可分时,通过硬间隔最大化,学习一个线性分类器,即线性可分支持向量机: 当训练数据近似线性可分时,引入松弛变量,通过软间隔最大化,学习一个线性分类器,即线性支持向量机: 当训练数据线性不可分时,通过使用核技巧及软间隔最大化,学习非线性支持向量机. 2. SVM 为什么采用间隔…
SVM 代码实现展示 相关模块引入 %matplotlib inline import numpy as np import matplotlib.pyplot as plt from scipy import stats import seaborn as sns;sns.set() # 使用seaborn的默认设置 数据集 这里自己生成一些随机数据 #随机来点数据 from sklearn.datasets.samples_generator import make_blobs X, y =…
目录 介绍 基于SVM对MINIST数据集进行分类 使用SVM SVM分析垃圾邮件 加载数据集 分词 构建词云 构建数据集 进行训练 交叉验证 炼丹术 总结 参考 介绍 在上一篇博客:数据挖掘入门系列教程(八点五)之SVM介绍以及从零开始公式推导中,详细的讲述了SVM的原理,并进行了详细的数学推导.在这篇博客中,主要是应用SVM,使用SVM进行数据分类,不会涉及到SVM的解释,so,如果对svm并不是特别了解的话,非常建议先去看我的上一篇博客(or其他博主的博客),然后再来看这一篇博客.因为在这…
  支持向量机是Vapnik等人于1995年首先提出的,它是基于VC维理论和结构风险最小化原则的学习机器.它在解决小样本.非线性和高维模式识别问题中表现出许多特有的优势,并在一定程度上克服了"维数灾难"和"过学习"等传统困难,再加上它具有坚实的理论基础,简单明了的数学模型,使得支持向量机从提出以来受到广泛的关注,并取得了长足的发展 .支持向量机(Support Vector Machine, SVM)本身是一个二元分类算法,是对感知机算法模型的一种扩展,现在的 SV…
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补充>的是我自己加的内容而非课堂内容,参考文献列于文末.博主能力有限,若有错误,恳请指正: #---------------------------------------------------------------------------------# <补充>支持向量机方法的三要素(若…
SVM本身是一个二值分类器 SVM算法最初是为二值分类问题设计的,当处理多类问题时,就需要构造合适的多类分类器. 目前,构造SVM多类分类器的方法主要有两类 (1)直接法,直接在目标函数上进行修改,将多个分类面的参数求解合并到一个最优化问题中,通过求解该最优化问题“一次性”实现多类分类.这种方法看似简单,但其计算复杂度比较高,实现起来比较困难,只适合用于小型问题中: (2)间接法,主要是通过组合多个二分类器来实现多分类器的构造,常见的方法有one-against-one和one-against-…
http://www.matlabsky.com/thread-9471-1-1.htmlSVM算法最初是为二值分类问题设计的,当处理多类问题时,就需要构造合适的多类分类器.目前,构造SVM多类分类器的方法主要有两类:一类是直接法,直接在目标函数上进行修改,将多个分类面的参数求解合并到一个最优化问题中,通过求解该最优化问题“一次性”实现多类分类.这种方法看似简单,但其计算复杂度比较高,实现起来比较困难,只适合用于小型问题中:另一类是间接法,主要是通过组合多个二分类器来实现多分类器的构造,常见的方…
关键词:Hu矩,SVM,OpenCV 在图像中进行目标物识别,涉及到特定区域内是否存在目标物,SVM可在样本量较少情况下对正负样本(图片中前景背景)做出良好区分,图片基本特征包括诸如HOG.LBP.HAAR等,在具体进行物体检测时考虑结合待检测物特点利用或设计新特征进行训练并分类.本文以几何不变矩为例说明OpenCV中SVM分类器的一般使用过程,下面依次简述Hu矩函数.SVM参数设置及实例演示. 1.Hu求解 double M[7];//Hu矩输出 Moments mo; //矩变量 src=i…
我们应用SVM的非线性分类功能对手写数字进行识别,我们在这应用poly做为非线性核 svm = mlpy.LibSvm(svm_type='c_svc', kernel_type='poly',gamma=10) svm.learn(x, y) 我们按像素分块读取数字特征后,形成训练样本,送入SVM训练 本博客所有内容是原创,如果转载请注明来源 http://blog.csdn.net/myhaspl/ 对样本本身测试 print svm.pred(x) 对供测试的未知样本进行测试 测试代码如下…
项目合作联系QQ:231469242 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 支持向量机python代码和博客介绍 https://github.com/adashofdata/muffin-…
load BreastTissue_data.mat n = randperm(size(matrix,1)); train_matrix = matrix(n(1:80),:); train_label = label(n(1:80),:); test_matrix = matrix(n(81:end),:); test_label = label(n(81:end),:); [Train_matrix,PS] = mapminmax(train_matrix'); Train_matrix…
1 支持向量机(SVM)的基本概念   SVM是一种分类算法,其侧重于模式识别方面.使用SVM可以大大提高分类的准确性.   分类相当于模式识别的子集合,模式识别重点在于对已知数据进行特征发现与提取.   SVM重点在于解决线性可分的问题.但很多时候,实际的问题是线性不可分的.SVM的思想就是将线性不可分的问题转化线性可分的问题.那么如何来是实现呢?就是将空间映射到多维空间.如把二维空间映射到三维空间.以增加维数来减少方程的次数.   比如,在二维空间中,不得不用 f(x)=ax^2+b^+c…
1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量机(SVM)软间隔 6. 支持向量机(SVM)核函数 1. 前言 在我没有学习接触机器学习之前,我就已经听说了SVM这个机器学习的方法.SVM自它诞生以来就以优秀的分类性能牢牢占据了霸主地位. 2. SVM原理 支持向量机(Support Vector Machine, SVM)的基本模型是在特征空…
支持向量机SVM算法实践 利用Python构建一个完整的SVM分类器,包含SVM分类器的训练和利用SVM分类器对未知数据的分类, 一.训练SVM模型 首先构建SVM模型相关的类 class SVM: def __init__(self, dataSet, labels, C, toler, kernel_option): self.train_x = dataSet # 训练特征 self.train_y = labels # 训练标签 self.C = C # 惩罚参数 self.toler…
SVM算法最初是为二值分类问题设计的,当处理多类问题时,就需要构造合适的多类分类器. 目前,构造SVM多类分类器的方法主要有两类:一类是直接法,直接在目标函数上进行修改,将多个分类面的参数求解合并到一个最优化问题中,通过求解该最优化问题"一次性"实现多类分类.这种方法看似简单,但其计算复杂度比较高,实现起来比较困难,只适合用于小型问题中:另一类是间接法,主要是通过组合多个二分类器来实现多分类器的构造,常见的方法有one-against-one和one-against-all两种. a.…
下面这是opencv官方文档中的代码,我加了一部分注释: #include "stdafx.h" #include "opencv2/core/core.hpp" #include "highgui.h" #include "ml.h" using namespace cv; int _tmain(int argc, _TCHAR* argv[]) { // , height = ; Mat image = Mat::zero…
所谓不平衡指的是:不同类别的样本数量差异非常大. 数据规模上可以分为大数据分布不均衡和小数据分布不均衡.大数据分布不均衡:例如拥有1000万条记录的数据集中,其中占比50万条的少数分类样本便于属于这种情况.小数据分布不均衡:例如拥有1000条数据样本的数据集中,其中占有10条的少数分类样本便于属于这种情况. 样本类别分布不平衡主要出现在分类问题的建模上.导致样本量少的分类所包含的特征过少,很难从中提取规律:即使得到分类模型,也容易产生过度依赖于有限的数据样本而导致过拟合的问题,当模型应用到新的数…
实验要求数据说明 :数据集data4train.mat是一个2*150的矩阵,代表了150个样本,每个样本具有两维特征,其类标在truelabel.mat文件中,trainning sample 图展示了理想的分类类结果:方案选择:选择并实现一种两分类方法(如感知机方法,SVM等):在此基础上设计使用该二分类器实现三分类问题的策略,并程序实现,画出分类结果直接采用现成的可实现多分类的方法(如多类SVM,BP网络等)进行问题求解.画出分类结果.我选择第二种,时间不够,只能使用sklearn中的sv…