luogu 普通版题解:https://www.cnblogs.com/lcxer/p/10876856.html 在普通版里,我们考虑对于\(n\)对情侣,恰好\(k\)对是和谐的方案数是 \[ ans[n][k]=\binom{n}{k}A^k_n2^kg(n-k) \] 然而这样做是\(O(n^2)\)的,瓶颈在于如何快速求出\(g(n-k)\) 之前我们的做法需要用到\(ans\)数组,这样是无法优化的,我们换一个思路来求\(g\) 假如我们已经确定了\(n-1\)对情侣都是乱序的方案数…
正解:数论 解题报告: 传送门 这题,想不到就很痛苦,但是理解了之后还是觉得也没有很难,,,毕竟实现不难QAQ 首先关于前面k对情侣的很简单,就是C(n,k)*C(n,k)*A(k,k)*2k 随便解释下,就是选座位*选情侣*情侣选座位*情侣之间换左右位置 然后难点大概在于后面的(n-k)对不能在一起的怎么求方案数 就考虑,dp,设f[i]:i对情侣的情况 然后随便选一排,显然选人有(2*i)*(2*i-2) 那对他们的情侣,有两种可能 一种是他们的情侣就坐一块儿了,于是就是(i-1)*2*f[…
洛谷 P2194 HXY烧情侣[Tarjan缩点] 分析+题解代码 题目描述: 众所周知,HXY已经加入了FFF团.现在她要开始喜(sang)闻(xin)乐(bing)见(kuang)地烧情侣了.这里有n座电影院,n对情侣分别在每座电影院里,然后电影院里都有汽油,但是要使用它需要一定的费用.m条单向通道连接相邻的两对情侣所在电影院.然后HXY有个绝技,如果她能从一个点开始烧,最后回到这个点,那么烧这条回路上的情侣的费用只需要该点的汽油费即可.并且每对情侣只需烧一遍,电影院可以重复去.然后她想花尽…
题目描述 众所周知,\(HXY\)已经加入了\(FFF\)团.现在她要开始喜\((sang)\)闻\((xin)\)乐\((bing)\)见\((kuang)\)地烧情侣了.这里有\(n\)座电影院,\(n\)对情侣分别在每座电影院里,然后电影院里都有汽油,但是要使用它需要一定的费用.\(m\)条单向通道连接相邻的两对情侣所在电影院.然后\(HXY\)有个绝技,如果她能从一个点开始烧,最后回到这个点,那么烧这条回路上的情侣的费用只需要该点的汽油费即可.并且每对情侣只需烧一遍,电影院可以重复去.然…
题目描述 众所周知,HXY已经加入了FFF团.现在她要开始喜(sang)闻(xin)乐(bing)见(kuang)地烧情侣了.这里有n座电影院,n对情侣分别在每座电影院里,然后电影院里都有汽油,但是要使用它需要一定的费用.m条单向通道连接相邻的两对情侣所在电影院.然后HXY有个绝技,如果她能从一个点开始烧,最后回到这个点,那么烧这条回路上的情侣的费用只需要该点的汽油费即可.并且每对情侣只需烧一遍,电影院可以重复去.然后她想花尽可能少的费用烧掉所有的情侣.问最少需要多少费用,并且当费用最少时的方案…
题目描述 众所周知,HXY已经加入了FFF团.现在她要开始喜(sang)闻(xin)乐(bing)见(kuang)地烧情侣了.这里有n座电影院,n对情侣分别在每座电影院里,然后电影院里都有汽油,但是要使用它需要一定的费用.m条单向通道连接相邻的两对情侣所在电影院.然后HXY有个绝技,如果她能从一个点开始烧,最后回到这个点,那么烧这条回路上的情侣的费用只需要该点的汽油费即可.并且每对情侣只需烧一遍,电影院可以重复去.然后她想花尽可能少的费用烧掉所有的情侣.问最少需要多少费用,并且当费用最少时的方案…
前言 当时和\(GYZ\)大佬一起做这个题,他表示这个题对他很不友好(手动滑稽) 题目描述 众所周知,\(HXY\) 已经加入了 \(FFF\) 团.现在她要开始喜(sang)闻(xin)乐(bing)见(kuang)地烧情侣了. 这里有 \(n\) 座电影院,\(n\) 对情侣分别在每座电影院里,然后电影院里都有汽油,但是要使用它需要一定的费用.\(m\) 条单向通道连接相邻的两对情侣所在电影院. \(HXY\) 有个绝技,如果她能从一个点开始烧,最后回到这个点,那么烧这条回路上的情侣的费用只…
[Luogu4931]情侣?给我烧了! 加强版(组合计数) 题面 洛谷 题解 戳这里 忽然发现我自己推的方法是做这题的,也许后面写的那个才是做原题的QwQ. #include<iostream> #include<cstdio> using namespace std; #define MAX 5000010 #define MOD 998244353 inline int read() { int x=0;bool t=false;char ch=getchar(); while…
题目链接 https://www.luogu.org/problemnew/show/P4931 题解 以下部分是我最开始的想法. 对于每一个 \(k\),满足恰好有 \(k\) 对情侣和睦的方案数为 \[\binom{n}{k} × \binom{n}{k} × k! × 2^k × f_{n - k}\] 其中,\(f_x\) 表示 \(x\) 对情侣坐 \(x\) 排座位且没有任何一对情侣坐在同一排的方案数. 上述式子的意义为:从 \(n\) 对情侣中选出 \(k\) 对作为和睦的,再从…
题面 传送门 题解 首先我们算出刚好有\(k\)对情侣的方案数 从\(n\)对情侣中选出\(k\)对,方案数为\({n\choose k}\) 从\(n\)排座位中选出\(k\)排,方案数为\({n\choose k}\) 情侣之间可以交换座位,方案数为\(2^k\) 座位之间可以随便排列,方案数为\(k!\) 然后我们还需要强制剩下的\(n-k\)对情侣不匹配 设\(g_i\)表示\(i\)对情侣没有一对匹配的方案数 第一排坐两个不是情侣的人的方案数有\(2n(2n-2)\),设这两个人为\(…