“什么情况!?居然不是黑色背景+白色文字的命令行.对,今天要介绍的是一个拥有白嫩的用户界面的深度学习框架.” 人工智能.神经网络.深度学习,这些概念近年已经涌入每个人的生活中,我想很多人早就按捺不住想亲自试一试怎么玩了. 然额,百度一下相关教程后,本来对人工智能怀揣着美好憧憬的壮志青年开始怀疑人生了. “我该先复习哪些大学课程?” “好像必须搞个Linux的系统,还得熟练Python...好麻烦" “Tensorflow, Keras, Caffe...这些都什么玩意儿,我该选哪个下手?” “这…
How Transformers Work --- The Neural Network used by Open AI and DeepMind Original English Version link:https://towardsdatascience.com/transformers-141e32e69591 Chinese version by 量子位. 本文的主要内容:RNN, LSTM, Attention, CNN, Transformer, Self-Attention, M…
Neural Approaches to Conversational AI 学姐介绍的一篇综述阅读笔记 SIGIR 2018 主要贡献: 提出一个综合的调查关于最近几年的应用在QA,任务导向和闲聊对话机器人的神经网络方法 描述了现在和传统方法之间的联系,允许我们更好的理解研究为什么并且如何进化并且散发光在我们前行的道路上 提出先进的方法去训练对话数据,使用监督学习和强化学习的方法 概述在搜索对话和工业中使用的标志性对话系统,研究我们已经达到的成就和仍需面对的挑战 对话: task comple…
2017-12-18 23:42:33 一.什么是深度学习 深度学习(deep neural network)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法.          --Wiki 在人工智能领域,有一个方法叫机器学习.在机器学习这个方法里,有一类算法叫神经网络.神经网络如下图所示: 上图中每个圆圈都是一个神经元,每条线表示神经元之间的连接.我们可以看到,上面的神经元被分成了多层,层与层之间的神经元有连接,而层内之间的神经元没有连…
参考文献:http://theorangeduck.com/page/neural-network-not-working 我的网络不起作用!该怎么办? 因此,你在深度学习方面正在开发下一个重大突破,但你遇到了一个不幸的挫折:你的神经网络不起作用,你不知道该怎么做.你去找你的老板/上司,但他们也不知道-他们和你一样对这一切都很陌生-那现在怎么办? 对你来说,幸运的是,我在这里列出了你可能做错了的所有事情,并根据我自己的经验编写了一份清单,用他们的项目来执行神经网络和监督其他学生: You For…
A Survey of Model Compression and Acceleration for Deep Neural Network时s 本文全面概述了深度神经网络的压缩方法,主要可分为参数修剪与共享.低秩分解.迁移/压缩卷积滤波器和知识精炼,论文对每一类方法的性能.相关应用.优势和缺陷等方面进行了独到分析. 研究背景 在神经网络方面,早在上个世纪末,Yann LeCun 等人已经使用神经网络成功识别了邮件上的手写邮编.至于深度学习的概念是由 Geoffrey Hinton 等人首次提出…
ImageNet Classification with Deep Convolutional Neural Network 利用深度卷积神经网络进行ImageNet分类 Abstract We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 d…
AI推理与Compiler AI芯片编译器能加深对AI的理解, AI芯片编译器不光涉及编译器知识,还涉及AI芯片架构和并行计算如OpenCL/Cuda等.如果从深度学习平台获得IR输入,还需要了解深度学习平台如Tensorflow.TVM等. 编译器领域的知识本身就非常艰深,和AI模型本身的关系也不是特别紧密,很难将AI建模作为发展方向,可以多关注GPGPU Architecture.即使AI芯片过气了,GPGPU还是会长盛不衰. OneFlow是有其独特的设计理念和技术路线的.目前市面上已有的…
论文翻译:https://arxiv.53yu.com/abs/2009.13931 基于高效多任务卷积神经网络的残余回声抑制 摘要 在语音通信系统中,回声会降低用户体验,需要对其进行彻底抑制.提出了一种利用卷积神经网络实现实时残余回声抑制(RAES)的方法.在多任务学习的背景下,采用双语音检测器作为辅助任务来提高性能.该训练准则基于一种新的损失函数,我们称之为抑制损失,以平衡残余回声的抑制和近端信号的失真.实验结果表明,该方法能有效抑制不同情况下的残余回声. 关键字:残余回声抑制,卷积神经网络…
移动互联网的发展给人们的社交和娱乐方式带来了很大的改变,以vlog.短视频等为代表的新兴文化样态正受到越来越多人的青睐.同时,随着AI智能.美颜修图等功能在图像视频编辑App中的应用,促使视频编辑效率和视频效果得到了很大的提升,也让视频应用场景更加丰富. 当前剪辑产品功能多样.素材丰富,但是开发周期较长.门槛较高.为了让剪辑软件更加智能.简单易用,提升开发者的效率,HMS Core 6为开发者提供视频编辑服务(Video Editor Kit),提供视频导入.编辑.渲染.导出.媒资管理等一站式视…