SVD小结】的更多相关文章

1.矩阵分解 假设一个矩阵Data是m行n列,SVD(奇异值分解)将Data分解为U,E,VT 三个矩阵: Datam*n=Um*kEk*kVTk*n E是一个对角矩阵,对角元素为奇异值,对应Data的奇异值,即Data*DataT特征值的平方 2.选取特征 下面确定选取哪几维特征实现降维,去除噪声和冗余信息,用低维数据集表示原数据集. 典型做法是保留矩阵90%能量信息,公式如下,先选一个值h: 奇异阵的平方 sig=ETE 如果奇异阵的平方中前i项的和大于奇异阵的平方总和,即sum(sig[:…
奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是很多机器学习算法的基石.本文就对SVD的原理做一个总结,并讨论在在PCA降维算法中是如何运用运用SVD的. 1. 回顾特征值和特征向量 我们首先回顾下特征值和特征向量的定义如下:$$Ax=\lambda x$$ 其中A是一个$n \times n$的矩阵,$x$是一个$n$维向量,则我们说$\lam…
奇异值分解(Singular Value Decomposition,SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是很多机器学习算法的基石.本文就对SVD的原理做一个总结,并讨论在在PCA降维算法中是如何运用运用SVD的. 1. 特征值和特征向量 特征值和特征向量的定义如下: Ax=λx 其中A是一个n×n的矩阵,x是一个n维向量,则我们说λ是矩阵A的一个特征值,而x是矩阵A的特征值λ所对应的特征向量. 求出特征值和特征…
前言 在项目实战的特征工程中遇到了采用SVD进行降维,具体SVD是什么,怎么用,原理是什么都没有细说,因此特开一篇,记录下SVD的学习笔记 参考:刘建平老师博客 https://www.cnblogs.com/pinard/p/6251584.html 奇异值分解(SVD)原理与在降维中的应用 回顾特征值和特征向量 考研学习线代到最后的内容,也是考研的难点就是求一个矩阵特征值,特征向量,以及求正定矩阵,标准正交化. 但是因为要进行特征分解,矩阵A必须为方阵.那么如果A不是方阵,即行和列不相同时,…
SVD(奇异值分解)真的是一个神奇的东西,这里就写个小结. 其实原理并不是那么难理解. 它在数据去噪方面和降维上有特殊作用,也与PCA有很大的联系. 首先我们先回顾一下 EVD,特征值分解,可以对SVD有更好地理解 一.特征值分解 特征值分解是每本线性代数书上基本都会涉及到的东西,涉及的基本原理也比较多. 它的过程其实就是相似对角化. 我们知道对称矩阵必定可以进行相似对角化,那么这里就说一下它的推导吧. 二.奇异值分解…
注:奇异值分解在数据降维中有较多的应用,这里把它的原理简单总结一下,并且举一个图片压缩的例子,最后做一个简单的分析,希望能够给大家带来帮助. 1.特征值分解(EVD) 实对称矩阵 在理角奇异值分解之前,需要先回顾一下特征值分解,如果矩阵\(A\)是一个\(m\times m\)的实对称矩阵(即\(A = A^T\)),那么它可以被分解成如下的形式 \[ A = Q\Sigma Q^T= Q\left[ \begin{matrix} \lambda_1 & \cdots & \cdots &…
https://yq.aliyun.com/ziliao/582885 最近一段时间已知忙着赶图像分析与理解的项目,在三个星期内强行接触了CNN,MRF,Caffe,openCV在内的很多东西.现在项目已经完全结束了,反而有点怀念看论文写代码的日子-希望能用这篇博文将我这段时间的工作作一个整理,也方便我之后写报告. 问题描述 深度估计是从2D图片中得到深度信息,深度估计主要分为两种形式:从单个的单目图像中获得深度信息,从一系列不同角度的单目图像中得到深度信息.在这个项目中我用到的方式主要是第一种…
注:在<SVD(奇异值分解)小结 >中分享了SVD原理,但其中只是利用了numpy.linalg.svd函数应用了它,并没有提到如何自己编写代码实现它,在这里,我再分享一下如何自已写一个SVD函数.但是这里会利用到SVD的原理,如果大家还不明白它的原理,可以去看看<SVD(奇异值分解)小结 >,或者自行百度/google. 1.SVD算法实现 1.1 SVD原理简单回顾 有一个\(m \times n\)的实数矩阵\(A\),我们可以将它分解成如下的形式 \[ A = U\Sigm…
机器学习(8) -- 降维 核心思想:将数据沿方差最大方向投影,数据更易于区分 简而言之:PCA算法其表现形式是降维,同时也是一种特征融合算法. 对于正交属性空间(对2维空间即为直角坐标系)中的样本点,如何用一个超平面(直线/平面的高维推广)对所有样本进行恰当的表达? 事实上,若存在这样的超平面,那么它大概应具有这样的性质: 最近重构性 : 样本点到这个超平面的距离都足够近: 最大可分性:样本点在这个超平面上的投影能尽可能分开. 一般的,将特征量从n维降到k维: 以最近重构性为目标,PCA的目标…
一,引言 我们知道,在实际生活中,采集到的数据大部分信息都是无用的噪声和冗余信息,那么,我们如何才能剔除掉这些噪声和无用的信息,只保留包含绝大部分重要信息的数据特征呢? 除了上次降到的PCA方法,本次介绍另外一种方法,即SVD.SVD可以用于简化数据,提取出数据的重要特征,而剔除掉数据中的噪声和冗余信息.SVD在现实中可以应用于推荐系统用于提升性能,也可以用于图像压缩,节省内存. 二,利用python事先SVD 1 svd原理--矩阵分解   在很多情况下,数据中的一小段携带了数据集的大部分信息…