Comet OJ - Contest #13】的更多相关文章

来源:Comet OJ - Contest #13 芝士相关: 复平面在信息学奥赛中的应用[雾 其实是道 sb 题??? 发现原式貌似十分可二项式定理,然后发现确实如此 我们把 \(a^i\) 替换成 \(\sqrt{a}^{2i}\) 然后发现原式求的就是 :\((\sqrt{a} +b)^n\) 展开后的偶数项 而这些偶数项有个性质,就是他们都不包含 \(\sqrt{a}\) ,所以我们可以把 \((\sqrt{a} +b)\) 转换到复平面上的点, \(b\) 做第一维, \(\sqrt…
来源:Comet OJ - Contest #13 一眼并查集,然后发现这题 tmd 要卡常数的说卧槽... 发现这里又要用并查集跳过访问点,又要用并查集维护联通块,于是开俩并查集分别维护就好了 一开始 XJB 搞了两个并查集建了个完全的连接方式,然后 xjb 写了堆合并,调了一会儿交上去喜见 TLE (自闭现场) 挺好的啊,然后改成动态开点并且访问点跳过的操作也优化了一下,终于爬过去了 ORZ 原 Code 代码挺好打&&极不清爽 //by Judge (zlw ak ioi) #inc…
Comet OJ Contest #13 D \(\displaystyle \sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor} a^{i} b^{n-2 i}\left(\begin{array}{c}{n} \\ {2 i}\end{array}\right)\) $ T \leq 10^4 , n , m , p \leq 10^{18} $ 注意,由于 $ p $ 不一定是质数,而且数据范围看起来很快速幂所有貌似只能快速幂. 这个式子可以化…
C2 首先用并查集维护\(1\)的连通块,然后用另外一个并查集维护第\(i\)行中,第\(j\)列之后的第一个\(0\)的位置,就是如果当前位置是\(1\)那么它的父亲是它右边的格子,否则是它自己. 时间复杂度\(O(nm\log m+nq)\). #include<bits/stdc++.h> #define Rint register int using namespace std; const int N = 1003, d[2][4] = {{0, 1, 0, -1}, {1, 0,…
题意 给一个$ n \times m$ 的网格,每个格子里有一个数字,非 \(0\) 即 \(1\),行从上往下依次编号为 \(1, 2, \cdots, n\),列从左往右依次编号为 \(1, 2, \cdots, m\). 给 \(q\) 次操作,每次给定一个以 \((x_1,y_1)\) 为左上角,\((x_2,y_2)\) 为右下角的矩形内所有格子里的数字都变成 \(1\).问每次操作之后,所有数字为 \(1\)的格子构成的四连通块的个数. \(1<=n,m<=1000\) \(1&l…
Rank53. 第一次打这种比赛.还是有不少问题的,以后改吧. A题WA了两次罚了不少时. C写到一半发现只能过1,就先弃了. D一眼没看出来.第二眼看出来就是一个类似于复数的快速幂. 然后B切了. 最后切C,重构了一次.还TLE了3发.浪费了大量时间. Tips: 1.A题FB基本上拿不到的,好好写1A就没事了. 2.先看一遍,大码题和数据结构放后面. 3.先开数论,就TM死刚数论.(这次要是切A之后直接刚D就有FB了) 4.别急,奖励拿不拿就那样吧. 下面是solution: A 签到题.…
Comet OJ - Contest #2 简要题解 cometoj A 模拟,复杂度是对数级的. code B 易知\(p\in[l,r]\),且最终的利润关于\(p\)的表达式为\(\frac{(p-l)(\frac{L+R}{2}-p)}{r-l}\),二次函数求最值即可. code C 枚举独立集点数即可.\(\sum_{i=0}^n\binom nip^{\binom i2}\). code D 树上的任意一个满足\(|S|\ge2\)的点集\(S\)均有一个唯一的中心,即直径的中点(…
Comet OJ - Contest #2简要题解 前言: 我没有小裙子,我太菜了. A 因自过去而至的残响起舞 https://www.cometoj.com/contest/37/problem/A?problem_id=1528 容易发现那玩意增长的飞快,只要模拟就可以了 //❤ ayaponzu* #include <cstdio> #include <cstring> #include <algorithm> #include <cstdlib>…
原题:Comet OJ - Contest #4-B https://www.cometoj.com/contest/39/problem/B?problem_id=1577传送门 一开始就想着暴力打表,结果.. 前缀和是个很好的工具,本题可以用相邻前缀和之差得到结果. 例如:K=4: 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 #include <cstdio> using int64 = long long; int main() { int T; scanf(&quo…
Solution of Comet OJ - Contest #11 A.eon -Problem designed by Starria- 在模 10 意义下,答案变为最大数的最低位(即原数数位的最小值)和原数最低位的差. 令$S$为输入数字串,则答案为 $(\min_{i=1}^{n}S_i-S_n)%10$ . 时间复杂度 $O(n)$ . B.usiness -Problem designed by Winniechen- 这是一个很显然的动态规划问题. 令$g_{i,j}$表示第$i$…