tensorflow 中图像的读取】的更多相关文章

1. 使用gfile读入文件内容.输入的是String,输出3-D tensor.可惜的是输入不能是tensor def decode_jpg(path): r""" 读取jpg图像 :param path: full path :return: A `Tensor` of type `float32`. 3-D with shape `[height, width, channels]` """ image_raw_data = tf.gfil…
  图像的读取,显示与保存 相关函数:cv2.imread().cv2.imshow().cv2.imwrite() 1.读入图像: 用cv2.imread()函数来读取图像,cv2.imread(路径,图像颜色空间)(其中颜色空间默认为BGR彩图)     cv2.IMREAD_COLOR:读入一副彩色图像 cv2.IMREAD_GRAYSCALE:以灰度模式读入图像 cv2.IMREAD_UNCHANGED:读入一幅图像,并且包括图像的 alpha 通道 示例代码 import cv2 im…
1.读入图像 用cv2.imread()函数来读取图像,cv2.imread(路径,图像颜色空间)(其中颜色空间默认为BGR彩图)     cv2.IMREAD_COLOR:读入一副彩色图像 cv2.IMREAD_GRAYSCALE:以灰度模式读入图像 cv2.IMREAD_UNCHANGED:读入一幅图像,并且包括图像的 alpha 通道 可以用1.0.-1代替: import cv2 img = cv2.imread('1.jpg') img1 = cv2.imread('2.jpg', 0…
关于Tensorflow读取数据,官网给出了三种方法: 供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码来供给数据. 从文件读取数据: 在TensorFlow图的起始, 让一个输入管线从文件中读取数据. 预加载数据: 在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况). 对于数据量较小而言,可能一般选择直接将数据加载进内存,然后再分batch输入网络进行训练(tip:使用这种方法时,结合yield 使用更为简洁,大家自己…
本博客默认读者对神经网络与Tensorflow有一定了解,对其中的一些术语不再做具体解释.并且本博客主要以图片数据为例进行介绍,如有错误,敬请斧正. 使用Tensorflow训练神经网络时,我们可以用多种方式来读取自己的数据.如果数据集比较小,而且内存足够大,可以选择直接将所有数据读进内存,然后每次取一个batch的数据出来.如果数据较多,可以每次直接从硬盘中进行读取,不过这种方式的读取效率就比较低了.此篇博客就主要讲一下Tensorflow官方推荐的一种较为高效的数据读取方式——tfrecor…
Google在TensorFlow1.0,之后推出了一个叫slim的库,TF-slim是TensorFlow的一个新的轻量级的高级API接口.这个模块是在16年新推出的,其主要目的是来做所谓的“代码瘦身”.它类似我们在TensorFlow模块中所介绍的tf.contrib.lyers模块,将很多常见的TensorFlow函数进行了二次封装,使得代码变得更加简洁,特别适用于构建复杂结构的深度神经网络,它可以用了定义.训练.和评估复杂的模型. 这里我们为什么要过来介绍这一节的内容呢?主要是因为Ten…
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程负责计算任务,所需数据直接从内存队列中获取. tf在内存队列之前,还设立了一个文件名队列,文件名队列存放的是参与训练的文件名,要训练 N个epoch,则文件名队列中就含有N个批次的所有文件名. 示例图如下: 图片来至于 https://zhuanlan.zhihu.…
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程负责计算任务,所需数据直接从内存队列中获取. tf在内存队列之前,还设立了一个文件名队列,文件名队列存放的是参与训练的文件名,要训练 N个epoch,则文件名队列中就含有N个批次的所有文件名. 示例图如下: 图片来至于 https://zhuanlan.zhihu.…
原文地址: https://blog.csdn.net/dcrmg/article/details/79776876 ------------------------------------------------------------------------------------------------------------------ tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具…
本章概述:在第一章的系列文章中介绍了tf框架的基本用法,从本章开始,介绍与tf框架相关的数据读取和写入的方法,并会在最后,用基础的神经网络,实现经典的Mnist手写数字识别. 有四种获取数据到TensorFlow程序的方法: tf.dataAPI:轻松构建复杂的输入管道.(优选方法,在新版本当中) QueueRunner:基于队列的输入管道从TensorFlow图形开头的文件中读取数据(这里主要介绍这种) Feeding:运行每一步时,Python代码提供数据.(在第一章简单介绍了,配合占位符p…