机器学习五 EM 算法】的更多相关文章

目录 引言 经典示例 EM算法 GMM 推导 参考文献: 引言 Expectation maximization (EM) 算法是一种非常神奇而强大的算法. EM算法于 1977年 由Dempster 等总结提出. 说EM算法神奇而强大是因为它可以解决含有隐变量的概率模型问题. EM算法是一个简单而又复杂的算法. 说它简单是因为其操作过程就两步, E(expectation)步: 求期望; M(maximization)步, 求极大. 说它复杂,是因为刚刚学习的时候,你会发现EM算法并不像之前的…
斯坦福大学机器学习,EM算法求解高斯混合模型.一种高斯混合模型算法的改进方法---将聚类算法与传统高斯混合模型结合起来的建模方法, 并同时提出的运用距离加权的矢量量化方法获取初始值,并采用衡量相似度的方法来融合高斯分量.从对比结果可以看出,基于聚类的高斯混合模型的说话人识别相对于传统的高斯混合模型在识别率上有所提高. ------------------------------ 高斯模型有单高斯模型(SGM)和混合高斯模型(GMM)两种. (1)单高斯模型: 为简单起见,阈值t的选取一般靠经验值…
摘要 EM算法全称为Expectation Maximization Algorithm,既最大期望算法.它是一种迭代的算法,用于含有隐变量的概率参数模型的最大似然估计和极大后验概率估计.EM算法经常用于机器学习和机器视觉的聚类领域,是一个非常重要的算法.而EM算法本身从使用上来讲并不算难,但是如果需要真正的理解则需要许多知识的相互串联. 引言 EM算法是机器学习十大经典算法之一.EM算法既简单有复杂,简单的在于他的思想而复杂则在于他的数学推理和复杂的概率公式.作为我这个新手来讲,决定先捡大的部…
我希望自己能通俗地把它理解或者说明白,但是,EM这个问题感觉真的不太好用通俗的语言去说明白,因为它很简单,又很复杂.简单在于它的思想,简单在于其仅包含了两个步骤就能完成强大的功能,复杂在于它的数学推理涉及到比较繁杂的概率公式等.如果只讲简单的,就丢失了EM算法的精髓,如果只讲数学推理,又过于枯燥和生涩,但另一方面,想把两者结合起来也不是件容易的事.所以,我也没法期待我能把它讲得怎样.希望各位不吝指导. EM模型 在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参…
今天不太想学习,炒个冷饭,讲讲机器学习十大算法里有名的EM算法,文章里面有些个人理解,如有错漏,还请读者不吝赐教. 众所周知,极大似然估计是一种应用很广泛的参数估计方法.例如我手头有一些东北人的身高的数据,又知道身高的概率模型是高斯分布,那么利用极大化似然函数的方法可以估计出高斯分布的两个参数,均值和方差.这个方法基本上所有概率课本上都会讲,我这就不多说了,不清楚的请百度. 然而现在我面临的是这种情况,我手上的数据是四川人和东北人的身高合集,然而对于其中具体的每一个数据,并没有标定出它来自“东北…
一.前述 Em算法是解决数学公式的一个算法,是一种无监督的学习. EM算法是一种解决存在隐含变量优化问题的有效方法.EM算法是期望极大(Expectation Maximization)算法的简称,EM算法是一种迭代型的算法,在每一次的迭代过程中,主要分为两步:即求期望(Expectation)步骤和最大化(Maximization)步骤. 二.具体 1.高斯混合模型       所谓混合高斯模型(GMM)就是指对样本的概率密度分布进行估计,而估计采用的模型(训练模型)是几个高斯模型的加权和(具…
EM 算法所面对的问题跟之前的不一样,要复杂一些. EM 算法所用的概率模型,既含有观测变量,又含有隐变量.如果概率模型的变量都是观测变量,那么给定数据,可以直接用极大似然估计法,或贝叶斯估计法来估计模型参数,但是,当模型含有隐变量时,情况就复杂一些,相当于一个双层的概率模型,要估计出两层的模型参数,就需要换种方法求解.EM 算法是通过迭代的方法求解. 监督学习是由训练数据 {(x(1),y(1)),(x(2),y(2)),...,(x(m),y(m))} 学习条件概率分布 P(Y|X) 或决策…
EM算法 各类估计 最大似然估计 Maximum Likelihood Estimation,最大似然估计,即利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值的计算过程. 直白来讲,就是给定了一定的数据,假定知道数据是从某种分布中随机抽取出来的,但是不知道这个分布具体的参数值,即:模型已知,参数未知,而MLE就是用来估计模型的参数. MLE的目标是找出一组参数(模型中的参数),使得模型产出观察数据的概率最大. \[arg~max_θP(X;θ) \] MLE求解过程 写出似然函数…
1 数学基础 在实际中,最小化的函数有几个极值,所以最优化算法得出的极值不确实是否为全局的极值,对于一些特殊的函数,凸函数与凹函数,任何局部极值也是全局极致,因此如果目标函数是凸的或凹的,那么优化算法就能保证是全局的. 凸集:在凸几何中,凸集(convex set)是在凸组合下闭合的仿射空间的子集.更具体地说,在欧氏空间中,凸集是对于集合内的每一对点,连接该对点的直线段上的每个点也在该集合内.例如,立方体是凸集,但是任何中空的或具有凹痕的例如月牙形都不是凸集.特别的,凸集,实数R上(或复数C上)…
简单易学的机器学习算法——EM算法 一.机器学习中的参数估计问题 在前面的博文中,如“简单易学的机器学习算法——Logistic回归”中,采用了极大似然函数对其模型中的参数进行估计,简单来讲即对于一系列样本,Logistic回归问题属于监督型学习问题,样本中含有训练的特征以及标签,在Logistic回归的参数求解中,通过构造样本属于类别和类别的概率: 这样便能得到Logistic回归的属于不同类别的概率函数: 此时,使用极大似然估计便能够估计出模型中的参数.但是,如果此时的标签是未知的,称为隐变…