一.概念 K-means是一种典型的聚类算法,它是基于距离的,是一种无监督的机器学习算法. K-means需要提前设置聚类数量,我们称之为簇,还要为之设置初始质心. 缺点: 1.循环计算点到质心的距离,复杂度较高. 2.对噪声不敏感,即使是噪声也会被聚类. 3.质心数量及初始位置的选定对结果有一定的影响. 二.计算 K-means需要循环的计算点到质心的距离,有三种常用的方法: 1.欧式距离 欧式距离源自N维欧氏空间中两点x,y间的距离公式,在二维上(x1,y1)到(x2,y2)的距离体现为:…