ALGEBRA-1 向量空间】的更多相关文章

转眼间我的学士学位修读生涯已经快要到期了,重读线性代数,一是为了重新理解Algebra的的重要概念以祭奠大一刷过的计算题,二是为了将来的学术工作先打下一点点(薄弱的)基础.数学毫无疑问是指导着的科研方向与科学发展,即使是同一本数学书,每次翻阅也能读出不同的内涵.享受不同的乐趣. P1-149 Strang在书的序言便给出了linear algebra的研究对象,一切的来源便在于Ax=b这个方程组.虽然从向量矩阵.线性方程组到向量空间.线性变换,费了好大劲才将任意一个线性变化凝练到一个矩阵上,但对…
title: [线性代数]3-1:向量空间(Space of Vectors) categories: Mathematic Linear Algebra keywords: Vectors Space Subspace Column Space Span toc: true date: 2017-09-19 17:40:30 Abstract: 本章介绍线性代数的核心内容,关于Vectors Space和subspace的一些观点,本文作为第一篇,主要说明基础知识 Keywords: 向量空间…
Abstract: 通过学习MIT 18.06课程,总结出的线性代数的知识点相互依赖关系,后续博客将会按照相应的依赖关系进行介绍.(2017-08-18 16:28:36) Keywords: Linear Algebra,Big Picture 开篇废话 废话不多说,网易公开课有MIT 18.06的课程翻译,MIT OCW提供相关练习,如有需要都可以进行下载. Gilbert Strang教授的讲授能够让大多数人入门,掌握这门课的大部分内容. 本课程教材使用的也是professor Stran…
Linear Algebra Learning From Data 1.1 Multiplication Ax Using Columns of A 有关于矩阵乘法的理解深入 矩阵乘法理解为左侧有是一个向量集合,都是由列向量组成的,随后右侧则是一个待变换的向量,当这个向量作用于这个向量组之后等效于在这个向量组为基底进行了换底操作,这样就从原来的单位向量基底换到了这个新的向量基底. 向量空间理解 向量空间的理解: 所有的向量组都表示着一个向量空间,而这个向量空间是只能描述比这个向量底的维度,所有的…
Vector spaces and subspaces Column space of A solving Ax=b Null space of A   Vector space requirements v+w and cv are in the space All combs cv+dw are in the space 向量空间对数乘和加法需要封闭 subspace of R^3: Line( L) through zero vector  is a subspace of R^3 Pla…
Section 2.7     PA=LU and Section 3.1   Vector Spaces and Subspaces   Transpose(转置) example: 特殊情况,对称矩阵(symmetric matrices),例如: 思考:R^R(R的转置乘以R)有什么特殊的? 回答:always symmetric why?   Permutation(置换) P=execute row exchanges 之前A=LU是建立在no row exchanges 的基础上的,…
Professor: Gilbert Strang Text: Introduction to Linear Algebra http://web.mit.edu/18.06   Lecture 1 contents: n linear equation, n unknowns Row picture & Column picture Matrix form   引入方程组 可表示为AX=b的形式,为: 从几何意义上理解,每个方程表示一条直线,两条直线相交于一点,即为方程组的解.以列的形式可以写…
调试DeepFlow光流算法,由于作者给出的算法是基于Linux系统的,所以要在Windows上运行,不得不做大量的修改工作.移植到Windows平台,除了一些头文件找不到外,还有一些函数也找不到.这其中就涉及到三个函数:sgemv_,sgemm­,saxpy­_.百度了一下,原来这三个函数是很有来头的.它们仨来自于Basic Linear Algebra Subprograms(BLAS),即基础线性代数子程序库.这个库其实就是关于向量和矩阵之间的运算的. BLAS维百介绍:https://e…
在线性代数中一个非常重要的概念就是向量空间R^n,这一章节将主要讨论向量空间的一系列性质. 一个向量空间是一些向量元素构成的非空集合V,需要满足如下公理: 向量空间V的子空间H需要满足如下三个条件: 两个定理均在阐述如何构成子空间,其证明也只需要简单的证明构造出的子空间满足子空间H需要满足的三个条件即可.…
这一章节我们主要讨论定义在R^n空间上的向量之间的关系,而这个关系概括来讲其实就是正交,然后引入正交投影.最佳逼近定理等,这些概念将为我们在求无解的线性方程组Ax=b的最优近似解打下基石. 正交性: 先举个最简单的例子,在平面中,两个二维向量的点乘如果为0,那么我们可判定两个向量互相垂直,那么实际上这两个向量就是R^2向量空间上的一组正交向量. 下面推广到R^n向量空间上,给出正交性的定义: 正交集: 给定向量集合S,当S中任意两个元素都相互正交,我们称S是一个正交集. 基的一个概念其实表征一个…