首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
np.random.randint()的返回值
】的更多相关文章
np.random.randint()的返回值
返回的是数组而非int 比如返回x,y 为[1][2] 而非1,2 容易在只有一维一列时没有意识到 其他函数的返回值也要注意…
np.random.randn()、np.random.rand()、np.random.randint()
(1)np.random.randn()函数 语法: np.random.randn(d0,d1,d2……dn) 1)当函数括号内没有参数时,则返回一个浮点数: 2)当函数括号内有一个参数时,则返回秩为1的数组,不能表示向量和矩阵: 3)当函数括号内有两个及以上参数时,则返回对应维度的数组,能表示向量或矩阵: 4)np.random.standard_normal()函数与np.random.randn()类似,但是np.random.standard_normal()的输入参数为元组(tupl…
10-numpy笔记-np.random.randint
b_idx = np.random.randint(0, 9, 90) >>> b_idx array([0, 1, 5, 4, 7, 2, 7, 0, 0, 4, 2, 2, 3, 5, 6, 4, 7, 0, 3, 2, 7, 3, 8, 5, 4, 3, 1, 8, 6, 6, 5, 5, 3, 2, 2, 2, 0, 4, 8, 1, 5, 3, 2, 6, 2, 3, 3, 3, 0, 4, 5, 1, 4, 0, 6, 7, 6, 3, 4, 7, 8, 5, 8, 6, 7…
np.random的随机数函数
np.random的随机数函数(1) 函数 说明 rand(d0,d1,..,dn) 根据d0‐dn创建随机数数组,浮点数, [0,1),均匀分布 randn(d0,d1,..,dn) 根据d0‐dn创建随机数数组,标准正态分布 randint(low[,high,shape]) 根据shape创建随机整数或整数数组,范围是[low, high) seed(s) 随机数种子, s是给定的种子值 np.random.rand import numpy as np a = np.random.ran…
np.random模块的使用介绍
np.random模块常用的一些方法介绍 名称 作用 numpy.random.rand(d0, d1, …, dn) 生成一个[d0, d1, …, dn]维的numpy数组,数组的元素取自[0, 1)上的均分布,若没有参数输入,则生成一个[0, 1)的数. numpy.random.randn(d0, d1, …, dn) 生成一个[d0, d1, …, dn]维的numpy数组,具有标准正态分布. numpy.random.randint(low, high=None, size=None…
关于NumPy的常用函数random.randint
np.random.randint(low, high=None, size=None, dtype='l') 该函数作用:用于产生离散均匀分布的整数 low:生成元素的最小值 high:生成元素的值一定小于high值 size:输出的大小,可以是整数也可以是元组 dtype:生成元素的数据类型 注意:high不为None,生成元素的值在[low,high)区间中:如果high=None,生成的区间为[0,low)区间…
np.random.choice方法
np.random.choice方法 觉得有用的话,欢迎一起讨论相互学习~Follow Me def choice(a, size=None, replace=True, p=None) 表示从a中随机选取size个数 replacement 代表的意思是抽样之后还放不放回去,如果是False的话,那么通一次挑选出来的数都不一样,如果是True的话, 有可能会出现重复的,因为前面的抽的放回去了. p表示每个元素被抽取的概率,如果没有指定,a中所有元素被选取的概率是相等的. 默认为有放回的抽样 (…
numpy.random.randint
low.high.size三个参数.默认high是None,如果只有low,那范围就是[0,low).如果有high,范围就是[low,high). >>> np.random.randint(2, size=10) array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) >>> np.random.randint(1, size=10) array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) >>> np.ra…
python指定概率随机取值 理解np.random.seed()
python指定概率随机取值参考如下: 下面是利用 np.random.choice()指定概率取样的例子: np.random.seed(0) p = np.array([0.1, 0.0, 0.7, 0.2]) index = np.random.choice([0, 1, 2, 3], p = p.ravel()) 这意味着你可以以下面的概率分布取到index所对应的数值:P(index=0)=0.1,P(index=1)=0.0,P(index=2)=0.7,P(index=3)=0.2…
Python中Random随机数返回值方式
1.a=["1","2","3"] print(random.choice(a)), 随机返回列表a中的一个元素 print(random.sample(a,2)), 随机返回列表a中的两个元素 print(random.randint(0,9)),随机返回0-9中的一个整数 print(random.uniform(0,9)),随机返回0-9中的一个浮点数…