Warm up 虽然网上题解这么多,感觉写下来并不是跟别人竞争访问量的,而是证明自己从前努力过,以后回头复习参考! 题意:n个点由m条无向边连接,求加一条边后桥的最少数量. 思路:如标题,tarjan算法求出所有的桥,然后连通的缩成点,用桥连接这些点,很容易发现这是一颗生成树,我们再加一条边必然成环,要使得桥的数量最少,就得使得这个环中的边最多.于是找这棵树最长的一条链.即树的直径.然后桥的数量减去直径既是答案.为什么不用加一呢,因为加的那条边使得成环不算桥. 总结:此题做了两天,如果全力去做的…
思路:强连通分量缩点,建立一颗新的树,然后求树的最长直径,然后加上一条边能够去掉的桥数,就是直径的长度. 树的直径长度的求法:两次bfs可以求,第一次随便找一个点u,然后进行bfs搜到的最后一个点v,一定是直径的一个端点(证明从略),第二次以点v为开头进行bfs,求出的最后一个点,就是直径的另一个端点,记录深度就是我们要求的长度.我这里是使用的bfs+dfs,是一样的,少开一个deep数组,节省一下空间吧…… 其实我一开始是不会求的,我以为随便一个叶子节点就可以做端点,交上去WA,当时还好奇感觉…
<题目链接> 题目大意:给出一个连通图,问你在这个连通图上加一条边,使该连通图的桥的数量最小,输出最少的桥的数量. 解题分析: 首先,通过Tarjan缩点,将该图缩成一颗树,树上的每个节点都是一个边双连通分量,树上的每条边都是桥,现在需要挑出两个点,将它们直接相连,这样它们原始路径上所有的桥因为形成了环而全部消失,因此为了使剩下的桥最少,我们需要找到路径上桥最多的两点,又由于缩点后,树的每条边都是桥,所以这里就转化为树上距离两点的最远距离,也就是求树的直径. 下面Tarjan的时候需要注意的是…
Warm up Problem Description   N planets are connected by M bidirectional channels that allow instant transportation. It's always possible to travel between any two planets through these channels. If we can isolate some planets from others by breaking…
Warm up 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=4612 Description N planets are connected by M bidirectional channels that allow instant transportation. It's always possible to travel between any two planets through these channels. If we can i…
果断对Tarjan不熟啊,Tarjan后缩点,求树上的最长路,注意重边的处理,借鉴宝哥的做法,开标记数组,标记自己的反向边. #pragma comment(linker, "/STACK:1024000000,1024000000") #include <iostream> #include <cstring> #include <cstdio> #include <queue> #include <cstdlib> usi…
Warm up Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submission(s): 5093    Accepted Submission(s): 1131 Problem Description N planets are connected by M bidirectional channels that allow instant transport…
题目链接 Warm up Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submission(s): 5353    Accepted Submission(s): 1195 Problem Description N planets are connected by M bidirectional channels that allow instant tran…
题目链接: Hdu 4612 Warm up 题目描述: 给一个无向连通图,问加上一条边后,桥的数目最少会有几个? 解题思路: 题目描述很清楚,题目也很裸,就是一眼看穿怎么做的,先求出来双连通分量,然后缩点重新建图,用bfs求树的直径,直径的长度就是减去桥的数目. 这个题目需要手动扩展,而且手动扩展的话要用C++提交,G++re哭了. #include <cstdio> #include <queue> #include <cstring> #include <i…
题意:一个无向图,问建立一条新边以后桥的最小数量. 分析:缩点以后,找出新图的树的直径,将这两点连接即可. 但是题目有个note:两点之间可能有重边!而用普通的vector保存边的话,用v!=fa的话是没办法让重边访问的,因此,使用数组模拟邻接表的方法来储存边. 这样,只要访问了一条边以后,令E[i].vis=E[i^1].vis=1即可,这样可以防止无向图的边和重边搞混.原理就是按位异或,一个奇数^1变为比它小1的偶数,反之亦然:如5^1=4,4^1=5. 具体见代码: #include <s…