Before you can plot anything, you need to specify which backend Matplotlib should use. The simplest option is to use Jupyter’s magic command %matplotlib inline. This tells Jupyter to set up Matplotlib so it uses Jupyter’s own backend. Scatter Plot ho…
In the former article "Data Preparation by Pandas and Scikit-Learn", we discussed about a series of steps in data preparation. Scikit-Learn provides the Pipeline class to help with such sequences of transformations. The Pipeline constructor take…
In this article, we dicuss some main steps in data preparation. Drop Labels Firstly, we drop labels for train set. Here we use drop() method in Pandas library. housing = strat_train_set.drop("median_house_value", axis=1) # drop labels for traini…
Getting started with machine learning in Python Machine learning is a field that uses algorithms to learn from data and make predictions. Practically, this means that we can feed data into an algorithm, and use it to make predictions about what might…
Step 1: Basic Python Skills install Anacondaincluding numpy, scikit-learn, and matplotlib Step 2: Foundational Machine Learning Skills Unofficial Andrew Ng course notes Tom Mitchell Machine Learning Lectures Step 3: Scientific Python Packages Overvie…
前言 由于实验原因,准备入坑 python 机器学习,而 python 机器学习常用的包就是 scikit-learn ,准备先了解一下这个工具.在这里搜了有 scikit-learn 关键字的书,找到了3本:<Learning scikit-learn: Machine Learning in Python><Mastering Machine Learning With scikit-learn><scikit-learn Cookbook>,第一本是2013年出版…
Week 1 Machine Learning with Big Data KNime - GUI based Spark MLlib - inside Spark CRISP-DM Week 2, Data Exploration 一般有两种方法,summary statistics 和 visualization Summary statistics (mean  平均数,median 中位数, mode 最常见的数) high Kurtosis 预示着有outlier的存在 visuali…
Python开发工具:Anaconda+Sublime 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归…
In machine learning, is more data always better than better algorithms? No. There are times when more data helps, there are times when it doesn't. Probably one of the most famous quotes defending the power of data is that of Google's Research Directo…
Machine Learning目前经常使用的语言有Python.R和MATLAB.如果采用Python,需要安装大量的数学相关和Machine Learning的包.一般安装Anaconda,可以把所有相关的包安装完成. Anaconda的下载地址在: https://www.continuum.io/downloads#windows 目前是4.3.0版本,Windows 64-bit的安装文件大约在413M左右. 下载.安装完成后,在Python的IDE环境中,可以选择Anaconda作为…
Here I list some useful functions in Python to get familiar with your data. As an example, we load a dataset named housing which is a DataFrame object. Usually, the first thing to do is get top five rows the dataset by head() function: housing = load…
The Dataset was acquired from https://www.kaggle.com/c/titanic For data preprocessing, I firstly defined three transformers: DataFrameSelector: Select features to handle. CombinedAttributesAdder: Add a categorical feature Age_cat which divided all pa…
Using Pandas Library The simplest way is to read data from .csv files and store it as a data frame object: import pandas as pd df = pd.read_csv('olympics.csv', index_col=0, skiprows=1) You can also read .xsl files and directly select the rows and col…
import csv filename = 'ch02-data.csv' data = [] try: with open(filename) as f://用with语句将数据文件绑定到对象f reader = csv.reader(f) header = next(reader)//Python 3.X 用的是next() data = [row for row in reader] except csv.Error as e: print('Error reading CSV file…
import numpy as np import matplotlib.pyplot as plt def is_outlier(points, threshold=3.5): if len(points.shape) == 1: points = points[:, None] # Find the median number of points median = np.median(points, axis=0) diff = np.sum((points - median)**2, ax…
week 3 Classification KNN :基本思想是 input value 类似,就可能是同一类的 Decision Tree Naive Bayes Week 4 Evaluating model Over-fitting 怎么在Decision Tree 训练时避免 overfitting: Pre-Pruning 和 Post-Pruning pre-pruning 两个停止条件:1. 某个node上的record数目小于一定量,比如 <20个, 2. 纯度到达一定数值,比如…
下图为四种不同算法应用在不同大小数据量时的表现,可以看出,随着数据量的增大,算法的表现趋于接近.即不管多么糟糕的算法,数据量非常大的时候,算法表现也可以很好. 数据量很大时,学习算法表现比较好的原理: 使用比较大的训练集(意味着不可能过拟合),此时方差会比较低:此时,如果在逻辑回归或者线性回归模型中加入很多参数以及层数的话,则偏差会很低.综合起来,这会是一个很好的高性能的学习算法.…
Train model: from sklearn.model_selection import GridSearchCV param_grid = [ # try 6 (3×2) combinations of hyperparameters {'n_neighbors': [3, 5, 7], 'weights': ['uniform','distance']} ] knn_clf = KNeighborsClassifier() # train across 3 folds, that's…
Machine and Deep Learning with Python Education Tutorials and courses Supervised learning superstitions cheat sheet Introduction to Deep Learning with Python How to implement a neural network How to build and run your first deep learning network Neur…
决策树在商品购买能力预测案例中的算法实现 作者:白宁超 2016年12月24日22:05:42 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(…
Python机器学习介绍(Python Machine Learning 中文版) 机器学习,如今最令人振奋的计算机领域之一.看看那些大公司,Google.Facebook.Apple.Amazon早已展开了一场关于机器学习的军备竞赛.从手机上的语音助手.垃圾邮件过滤到逛淘宝时的物品推荐,无一不用到机器学习技术. 如果你对机器学习感兴趣,甚至是想从事相关职业,那么这本书非常适合作为你的第一本机器学习资料.市面上大部分的机器学习书籍要么是告诉你如何推导模型公式要么就是如何代码实现模型算法,这对于零…
Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcement learning Structured prediction Feature engineering Feature learning Online learning Semi-supervised learning Unsupervised learning Learning to rank…
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? Learning Machine Learning Learning About Computer Science Educational Resources Advice Artificial Intelligence How-to Question Learning New Things Lea…
机器学习实战 (豆瓣) https://book.douban.com/subject/24703171/ 机器学习是人工智能研究领域中一个极其重要的研究方向,在现今的大数据时代背景下,捕获数据并从中萃取有价值的信息或模式,成为各行业求生存.谋发展的决定性手段,这使得这一过去为分析师和数学家所专属的研究领域越来越为人们所瞩目. 本书第一部分主要介绍机器学习基础,以及如何利用算法进行分类,并逐步介绍了多种经典的监督学习算法,如k近邻算法.朴素贝叶斯算法.Logistic回归算法.支持向量机.Ada…
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machine Learning (by Hastie, Tibshirani, and Friedman's ) 2.Elements of Statistical Learning(by Bishop's) 这两本是英文的,但是非常全,第一本需要有一定的数学基础,第可以先看第二本.如果看英文觉得吃力,推荐看一下下面…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
原文地址:http://www.demnag.com/b/java-machine-learning-tools-libraries-cm570/?ref=dzone This is a list of 25 Java Machine learning tools & libraries. Weka has a collection of machine learning algorithms for data mining tasks. The algorithms can either be…
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(K-means聚…
机器学习及其基础概念简介 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(K-means聚…
We should think in below four questions: the decription of machine learning key tasks in machine learning why you need to learn about machine learning why python is so great for machine learning 1.The author talked some examples about machine learnin…