[LOJ 2082] 「JSOI2016」炸弹攻击 2】的更多相关文章

[LOJ 2082] 「JSOI2016」炸弹攻击 2 链接 链接 题解 枚举发射源,将发射源当做原点,对敌人和激光塔极角排序. 由于敌人纵坐标均为正,而其它点均为负,因此每两个角度差在 \(\pi\) 以内的激光塔内部的敌人的个数之和就是该发射源对答案的贡献. 用前缀和以及 \(Two Pointers\) 可以在 \(O(N)\) 的时间内统计一个发射源的贡献. 时间复杂度 \(O(N2LogN)\). 代码 #include <iostream> #include <cstdio&…
题面 传送门 题解 我们枚举一下发射源,并把敌人和激光塔按极角排序,那么一组合法解就是两个极角之差不超过\(\pi\)且中间有敌人的三元组数,预处理一下前缀和然后用双指针就行了 //minamoto #include<bits/stdc++.h> #define R register #define ll long long #define inline __inline__ __attribute__((always_inline)) #define fp(i,a,b) for(R int…
目录 题目链接 题解 代码 题目链接 loj#2076. 「JSOI2016」炸弹攻击 题解 模拟退火 退火时,由于答案比较小,但是温度比较高 所以在算exp时最好把相差的点数乘以一个常数让选取更差的的概率降低 代码 #include<ctime> #include<cmath> #include<cstdio> #include<cstring> #include<algorithm> #define gc getchar() #define…
题解 想到n3发现思路有点卡住了 对于每个发射塔把激光塔和敌人按照极角排序,对于一个激光塔,和它转角不超过pi的激光塔中间夹的敌人总和就是答案 记录前缀和,用two-Points扫一下就行 代码 #include <bits/stdc++.h> #define enter putchar('\n') #define space putchar(' ') #define pii pair<int,int> #define fi first #define se second #def…
题面 传送门 题解 退火就好了 记得因为答案比较小,但是温度比较高,所以在算\(\exp\)的时候最好把相差的点数乘上一个常数来让选取更劣解的概率降低 话虽如此然而我自己打的退火答案永远是\(0\)--只好抄了一发--但是完全看不出有什么区别啊-- //minamoto #include<bits/stdc++.h> #define R register #define rd ((.0+rand())/RAND_MAX) #define inline __inline__ __attribut…
题目链接 loj#2071. 「JSOI2016」最佳团体 题解 树形dp强行01分规 代码 #include<cstdio> #include<cstring> #include<algorithm> #define gc getchar() #define pc putchar inline int read() { int x = 0,f = 1; char c = gc; while(c < '0' || c > '9') c = gc; while…
题解 我冷静一下,话说如果去掉建筑和R的限制好像是模拟退火吧 然后开始写模拟退火了,起始点就随机一个敌人作为起始点 没对着数据写了一下获得了70pts,感到美滋滋 然后对着数据卡了很久--发现有个数据点似乎需要从初始温度小一点的情况开始跳,于是就10次从20000降温,10次从2000降温 AC啦 该题的AC率显著地下降了= = 代码 #include <bits/stdc++.h> #define enter putchar('\n') #define space putchar(' ')…
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生 活不可或缺的必需品!能充上电吗?现在就试试看吧!」 SHOI 概率充电器由 \(n-1\) 条导线连通了 \(n\) 个充电元件.进行充电时,每条导线是否可以导电以 概率决定,每一个充电元件自身是否直接进行充电也由概率决定.随后电能可以从直接充电的元件经…
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \sum_{i=0}^{T-1} [(i\in A\pmod P)\land(i\in B\pmod Q)] \] 换言之,就是问有多少个小于 \(T\) 的非负整数 \(x\) 满足:\(x\) 除以 \(P\) 的余数属于 \(A\) 且 \(x\) 除以 \(Q\) 的余数属于 \(B\). 输…
Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\times a_i\%\) 单位的光会穿过它,有 \(x\times b_i\%\) 的会被反射回去. 现在 \(n\) 层玻璃叠在一起,有 \(1\) 单位的光打到第 \(1\) 层玻璃上,那么有多少单位的光能穿过所有 \(n\) 层玻璃呢? 输入格式 第一行一个正整数 \(n\),表示玻璃层数.…