EM算法(徐亦达)笔记】的更多相关文章

EM算法在很多地方都用使用到,比如简单的K-means算法,还有在隐马尔可夫里面,也涉及到了EM算法,可见EM算法在机器学习领域的重要地位.在这里就写一下我对于EM算法的一些理解笔记.后续有新的理解也会追加的. EM算法的全称叫做:期望最大.EM算法的想法很简单,就像一个人有两条腿向前走,你总是需要固定一条腿动另一条腿这样交替往前走.这里面的两条腿,一个是隐变量,一个是参数θ. 在了解EM算法之前,首先需要了解一些基本的概念. 凹凸函数 这个是<最优化>里面的概念,如果它的二阶导大于0,那么就…
最近感觉对EM算法有一点遗忘,在表述的时候,还是有一点说不清,于是重新去看了这篇<CS229 Lecture notes>笔记. 于是有了这篇小札. 关于Jensen's inequality不等式: Corollary(推论): 如果函数f(x)为凸函数,那么在 f(x) 上任意两点X1,X2所作割线一定在这两点间的函数图象的上方,即:    其中t表示[x1,x2]的位置 举例子: 当t=1/2 ;  1/2*f(x1) + 1/2*f(x2) >= f( 1/2*x1 + 1/2*…
EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计.EM算法的每次迭代由两步组成:E步,求期望(expectation):M步,求极大(Maximization). EM算法的引入 给一些观察数据,可以使用极大似然估计法,或贝叶斯估计法估计模型参数.但是当模型含有隐变量时,就不能简单地使用这些方法.有些时候,参数的极大似然估计问题没有解析解,只能通过迭代的方法求解,EM算法就是可以用于求解这个问题的一种迭代算法. EM算法 输…
EM算法 作者:樱花猪   摘要: 本文为七月算法(julyedu.com)12月机器学习第十次次课在线笔记.EM算法全称为Expectation Maximization Algorithm,既最大期望算法.它是一种迭代的算法,用于含有隐变量的概率参数模型的最大似然估计和极大后验概率估计.EM算法经常用于机器学习和机器视觉的聚类领域,是一个非常重要的算法.而EM算法本身从使用上来讲并不算难,但是如果需要真正的理解则需要许多知识的相互串联. 引言:      EM算法是机器学习十大经典算法之一.…
提出混合模型主要是为了能更好地近似一些较复杂的样本分布,通过不断添加component个数,能够随意地逼近不论什么连续的概率分布.所以我们觉得不论什么样本分布都能够用混合模型来建模.由于高斯函数具有一些非常有用的性质.所以高斯混合模型被广泛地使用. GMM与kmeans相似,也是属于clustering,不同的是.kmeans是把每一个样本点聚到当中一个cluster,而GMM是给出这些样本点到每一个cluster的概率.每一个component就是一个聚类中心. GMM(Gaussian Mi…
本系列笔记内容参考来源为李航<统计学习方法> EM算法是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计或极大后验概率估计.迭代由 (1)E步:求期望 (2)M步:求极大 组成,称为期望极大算法. EM算法引入 EM算法是通过不断求解下界的极大化逼近求解对数似然函数极大化的算法. EM在监督学习中的应用 收敛性 EM算法在高斯混合模型学习中的应用 高斯混合模型 高斯混合模型参数估计的EM算法 EM算法的推广 EM算法还可解释为F函数的极大-极大算法,基于这个解释有若干变形与推广. 首先…
EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域的基础,比如隐式马尔科夫算法(HMM),LDA主题模型的变分推断算法等等.本文对于EM算法,我们主要从以下三个方向学习: 1,最大似然 2,EM算法思想及其推导 3,GMM(高斯混合模型) 1,最大似然概率 我们经常会从样本观察数据中,找到样本的模型参数.最常用的方法就是极大化模型分布的对数似然函数.怎么理解呢?下面看我一一道来. 假设我们需要调查我们学习的男生和女生的身高分布.你…
本文,意在说明<统计学习方法>第九章EM算法的三硬币例子,公式(9.5-9.6如何而来) 下面是(公式9.5-9.8)的说明, 本人水平有限,怀着分享学习的态度发表此文,欢迎大家批评,交流.感谢您的阅读.欢迎转载本文,转载时请附上本文地址:http://www.cnblogs.com/Dzhouqi/p/3203776.html另外:欢迎访问我的博客 http://www.cnblogs.com/Dzhouqi/…
EM也称期望极大算法(Expectation Maximization),是一种用来对含有隐含变量的概率模型进行极大似然估计的迭代算法.该算法可应用于隐马尔科夫模型的参数估计. 1.含有隐含参数的概率模型举例? 三硬币模型:A.B.C三枚硬币,这些硬币投出正面的概率分别为π.p.q.进行如下硬币实验,先投硬币A,如果为正面则投硬币B,如果为反面则投硬币C.最终出现的正面则记为1,出现反面则记为0:独立的重复n次实验(取n=10),出现的结果如下: {1,1,0,1,0,1,0,1,1} 假设只能…
今天要来讨论的是EM算法.第一眼看到EM我就想到了我大枫哥,EM Master,千里马.RUA!!!不知道看这个博客的人有没有懂这个梗的. 好的,言归正传.今天要讲的EM算法,全称是Expectation maximization.期望最大化. 怎么个意思呢,就是给你一堆观測样本.让你给出这个模型的參数预计.我靠,这套路我们前面讨论各种回归的时候不是已经用烂了吗?求期望,求对数期望,求导为0,得到參数预计值.这套路我懂啊,MLE! 但问题在于,假设这个问题存在中间的隐变量呢?会不会把我们的套路给…
EM 算法所面对的问题跟之前的不一样,要复杂一些. EM 算法所用的概率模型,既含有观测变量,又含有隐变量.如果概率模型的变量都是观测变量,那么给定数据,可以直接用极大似然估计法,或贝叶斯估计法来估计模型参数,但是,当模型含有隐变量时,情况就复杂一些,相当于一个双层的概率模型,要估计出两层的模型参数,就需要换种方法求解.EM 算法是通过迭代的方法求解. 监督学习是由训练数据 {(x(1),y(1)),(x(2),y(2)),...,(x(m),y(m))} 学习条件概率分布 P(Y|X) 或决策…
本文介绍密度估计的 EM(Expectation-Maximization,期望最大). 假设有 {x(1),...,x(m)},因为是无监督学习算法,所以没有 y(i). 我们通过指定联合分布 p(x(i),z(i))=p(x(i)|z(i))p(z(i)) 来对数据建模.这里 z(i)~Multinomial(Φ),其中 Φj≥0,Φ1+Φ2+...+Φk=1,参数 Φj 给定 p(z(i)=j),x(i)|z(i)=j~N(μj,∑j).k 表示 z(i) 能取的值的个数,所以,通过从 {…
极大似然估计 考虑一个高斯分布\(p(\mathbf{x}\mid{\theta})\),其中\(\theta=(\mu,\Sigma)\).样本集\(X=\{x_1,...,x_N\}\)中每个样本都是独立的从该高斯分布中抽取得到的,满足独立同分布假设. 因此,取到这个样本集的概率为: \[\begin{aligned} p(X\mid{\theta}) &= \prod_{i=1}^Np(x_i\mid\theta) \end{aligned}\] 我们要估计模型参数向量\(\theta\)…
似然函数 常说的概率是指给定参数后,预测即将发生的事件的可能性.拿硬币这个例子来说,我们已知一枚均匀硬币的正反面概率分别是0.5,要预测抛两次硬币,硬币都朝上的概率: H代表Head,表示头朝上 p(HH | pH = 0.5) = 0.5*0.5 = 0.25. 这种写法其实有点误导,后面的这个p其实是作为参数存在的,而不是一个随机变量,因此不能算作是条件概率,更靠谱的写法应该是 p(HH;p=0.5). 而似然概率正好与这个过程相反,我们关注的量不再是事件的发生概率,而是已知发生了某些事件,…
转载请注明出处: http://www.cnblogs.com/gufeiyang 首先考虑这么一个问题.操场东边有100个男生,他们的身高符合高斯分布.操场西边有100个女生,她们的身高也符合高斯分布. 如果告诉了男生的身高,我们很容易用极大似然估计求出正态分布的参数. 同理,给出了女生的身高,我们也很容易得到高斯分布的参数. 接下来事情发生了, 男生跑入女生队伍中, 然后统计了200个人的身高,但是却不知道每个身高是男的还是女生的. 这样的话就很纠结了. 如果我们要是知道了每个人的性别改多好…
pLSA模型--基于概率统计的pLSA模型(probabilistic Latent Semantic Analysis,概率隐语义分析),增加了主题模型,形成简单的贝叶斯网络,可以使用EM算法学习模型参数.概率潜在语义分析应用于信息检索,过滤,自然语言处理,文本的机器学习或者其他相关领域. D代表文档,Z代表主题(隐含类别),W代表单词: P(di)表示文档di的出现概率, P(zk|di)表示文档di中主题zk的出现概率, P(wj|zk)表示给定主题zk出现单词wj的概率.每个主题在…
EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域算法的基础,比如隐式马尔科夫算法(HMM), LDA主题模型的变分推断,混合高斯模型GMM,基于概率统计的pLSA模型. EM算法概述(原文) 我们经常会从样本观察数据中,找出样本的模型参数. 最常用的方法就是极大化模型分布的对数似然函数. 但是在一些情况下,我们得到的观察数据有未观察到的隐含数据,此时我们未知的有隐含数据和模型参数,因而无法直接用极大化对数似然函数得到模型分布的参…
EM算法总结 - The EM Algorithm EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法.在之后的MT中的词对齐中也用到了.在Mitchell的书中也提到EM可以用于贝叶斯网络中. 下面主要介绍EM的整个推导过程. 1. Jensen不等式 回顾优化理论中的一些概念.设f是定义域为实数的函数,如果对于所有的实数x,,那么f是凸函数.当x是向量时,如果其hessian矩阵H是半正定的(),那么f是凸函数.如果或者,那…
转自:http://blog.csdn.net/abcjennifer/article/details/8198352 在聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了详细说明.本文主要针对如何用EM算法在混合高斯模型下进行聚类进行代码上的分析说明. 1. GMM模型: 每个 GMM 由 K 个 Gaussian 分布组成,每个 Gauss…
在聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了详细说明.本文主要针对如何用EM算法在混合高斯模型下进行聚类进行代码上的分析说明. 1. GMM模型: 每个 GMM 由 K 个 Gaussian 分布组成,每个 Gaussian 称为一个"Component",这些 Component 线性加成在一起就组成了 GMM 的概率密度函…
[转载请注明出处]http://www.cnblogs.com/mashiqi 2014/11/18 更新.发现以前的公式(2)里有错误,现已改过来.由于这几天和Can讨论了EM算法,回头看我以前写的这篇博客的时候,就发现公式里面有一个错误(多了一个连加符号),现在改正过来了.经过和Can的讨论,我又认真思考了EM算法,发现以前确实是没有弄懂这个算法的本质的.加油,以后学习知识不要只停留在表面上,要有insight!!! 2014/5/19 本文公式编辑捉鸡,请知道怎么在博客园里高效编辑公式的朋…
极大似然估计,只是一种概率论在统计学的应用,它是参数估计的方法之一.说的是已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值.最大似然估计是建立在这样的思想上:已知某个参数能使这个样本出现的概率最大,我们当然不会再去选择其他小概率的样本,所以干脆就把这个参数作为估计的真实值.      我们先来假设这样一个问题:要求解人群(100人)中男女身高的分布,这里很明显有两种分布,男和女,但是事先我们并不知道他们服从哪种分布,而且…
在聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了具体说明. 本文主要针对怎样用EM算法在混合高斯模型下进行聚类进行代码上的分析说明. 1. GMM模型: 每一个 GMM 由 K 个 Gaussian 分布组成.每一个 Gaussian 称为一个"Component",这些 Component 线性加成在一起就组成了 GMM 的概率…
最近接触了pLSA模型,该模型需要使用期望最大化(Expectation Maximization)算法求解. 本文简述了以下内容: 为什么需要EM算法 EM算法的推导与流程 EM算法的收敛性定理 使用EM算法求解三硬币模型 为什么需要EM算法 数理统计的基本问题就是根据样本所提供的信息,对总体的分布或者分布的数字特征作出统计推断.所谓总体,就是一个具有确定分布的随机变量,来自总体的每一个iid样本都是一个与总体有相同分布的随机变量. 参数估计是指这样一类问题——总体所服从的分布类型已知,但某些…
第一部分: 这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与k-means一样,给定的训练样本是,我们将隐含类别标签用表示.与k-means的硬指定不同,我们首先认为是满足一定的概率分布的,这里我们认为满足多项式分布,,其中,有k个值{1,…,k}可以选取.而且我们认为在给定后,满足多值高斯分布,即.由此可以得到联合分布. 整个模型简单描述为对于每个样例,我们先从k个类别中按多项式分布抽取一个,然后根据所对…
前言:本文主要介绍PLSA及EM算法,首先给出LSA(隐性语义分析)的早期方法SVD,然后引入基于概率的PLSA模型,其参数学习采用EM算法.接着我们分析如何运用EM算法估计一个简单的mixture unigram 语言模型和混合高斯模型GMM的参数,最后总结EM算法的一般形式及运用关键点.对于改进PLSA,引入hyperparameter的LDA模型及其Gibbs Sampling参数估计方法放在本系列后面的文章LDA及Gibbs Samping介绍. 1 LSA and SVD LSA(隐性…
EM算法(Expectation Maximization Algorithm) 1. 前言   这是本人写的第一篇博客(2013年4月5日发在cnblogs上,现在迁移过来),是学习李航老师的<统计学习方法>书以及斯坦福机器学习课Andrew Ng的EM算法课后,对EM算法学习的介绍性笔记,如有写得不恰当或错误的地方,请指出,并多多包涵,谢谢.另外本人数学功底不是很好,有些数学公式我会说明的仔细点的,如果数学基础好,可直接略过. 2.基础数学知识   在正式介绍EM算法之前,先介绍推导EM算…
混合高斯模型和EM算法 这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与K-means一样,给定的训练样本是,我们将隐含类别标签用表示.与k-means的硬指定不同,我们首先认为是满足一定的概率分布的,这里我们认为满足多项式分布,,其中,有k个值{1,…,k}可以选取.而且我们认为在给定后,满足多值高斯分布,即.由此可以得到联合分布. 整个模型简单描述为对于每个样例,我们先从k个类别中按多项式分布抽取一个,…
注:本文中涉及到的公式一律省略(公式不好敲出来),若想了解公式的具体实现,请参考原著. 1.基本概念 (1)聚类的思想: 将数据集划分为若干个不想交的子集(称为一个簇cluster),每个簇潜在地对应于某一个概念.但是每个簇所具有现实意义由使用者自己决定,聚类算法仅仅会进行划分. (2)聚类的作用: 1)可以作为一个单独的过程,用于寻找数据的一个分布规律 2)作为分类的预处理过程.首先对分类数据进行聚类处理,然后在聚类结果的每一个簇上执行分类过程. (3)聚类的性能度量: 1)外部指标:该指标是…