二叉搜索树 定义:如果一颗二叉树的每个节点对应一个关键码值,且关键码值的组织是有顺序的,例如左子节点值小于父节点值,父节点值小于右子节点值,则这棵二叉树是一棵二叉搜索树. 类(TreeNode):定义二叉搜索树各个节点 在该类中,分别存放节点本身的值,以及其左子节点,右子节点,父节点的值. class TreeNode(object): def __init__(self,val): self.value = val #存值 self.left = None #存本节点的左子节点 self.ri…
查找是指在一批记录中找出满足指定条件的某一记录的过程,例如在数组{ 8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15 }中查找数字15,实现代码很简单: int key = 15; int[] datas = new int[] { 8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15 }; for(int i = 0; i < datas.length; i++) { if(datas[i] == …
目录 简介 AVL的特性 AVL的构建 AVL的搜索 AVL的插入 AVL的删除 简介 平衡二叉搜索树是一种特殊的二叉搜索树.为什么会有平衡二叉搜索树呢? 考虑一下二叉搜索树的特殊情况,如果一个二叉搜索树所有的节点都是右节点,那么这个二叉搜索树将会退化成为链表.从而导致搜索的时间复杂度变为O(n),其中n是二叉搜索树的节点个数. 而平衡二叉搜索树正是为了解决这个问题而产生的,它通过限制树的高度,从而将时间复杂度降低为O(logn). AVL的特性 在讨论AVL的特性之前,我们先介绍一个概念叫做平…
一个被广泛使用的面试题: 给定一个二叉搜索树,请找出其中的第K个大的结点. PS:我第一次在面试的时候被问到这个问题而且让我直接在白纸上写的时候,直接蒙圈了,因为没有刷题准备,所以就会有伤害.(面完的感慨是:千里马常有,伯乐不常有. 互联网公司普遍浮躁,想拿到互联网公司的入场券,我得回去刷题.) 知耻而后勇,于是我回家花了两个半小时(在不参考任何书本和网路上的源码的前提下),从构建BST开始,到实现中序遍历,最后用递归方法写出bst_findKthNode()并用gdb调试成功. 不过,使用递归…
思路 二叉搜索树的插入 TreeNode InsertRec(rootNode, key) = if rootNode == NULL, return new Node(key) if key >= rootNode.data, rootNode.rightChild = InsertRec(rootNode.rightChild, key) if Key < rootNode.data, rootNode.leftChild = InsertRec(rootNode.leftChild, k…
二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现.由于篇幅有限,此处仅作一般介绍(如果想要完全了解二叉树以及其衍生出的各种算法,恐怕要写8~10篇). 1)二叉树(Binary Tree) 顾名思义,就是一个节点分出两个节点,称其为左右子节点:每个子节点又可以分出两个子节点,这样递归分叉,其形状很像一颗倒着的树.二叉树限制了每个节点最多有两个子节…
github:代码实现 本文算法均使用python3实现 1. 二叉搜索树定义   二叉搜索树(Binary Search Tree),又名二叉排序树(Binary Sort Tree).   二叉搜索树是具有有以下性质的二叉树:   (1)若左子树不为空,则左子树上所有节点的值均小于或等于它的根节点的值.   (2)若右子树不为空,则右子树上所有节点的值均大于或等于它的根节点的值.   (3)左.右子树也分别为二叉搜索树. 2. 二叉搜索树的相关操作 2.1 插入操作   从根节点开始,若插入…
二叉搜索树 建树 删除节点,三种情况,递归处理.左右子树都存在,两种方法,一种找到左子树最大节点,赋值后递归删除.找右子树最小同理 class Solution { public: TreeNode* deleteNode(TreeNode* root, int key) { if(root==NULL)return NULL; if(root->val>key) { root->left = deleteNode(root->left,key); return root; } i…
图解二叉搜索树概念 二叉树呢,其实就是链表的一个二维形式,而二叉搜索树,就是一种特殊的二叉树,这种二叉树有个特点:对任意节点而言,左孩子(当然了,存在的话)的值总是小于本身,而右孩子(存在的话)的值总是大于本身. 下面来介绍在此种二叉树结构上的查找,插入,删除算法思路. 查找:因为这种结构就是为了来方便查找的,所以查找其中的某个值很容易,从根开始,小的往左找,大的往右找,不大不小的就是这个节点了: 代码很简单,这里就不写了. 插入:插入一样的道理,从根开始,小的往左,大的往右,直到叶子,就插入.…
一.查找二叉树(二叉搜索树BST) 1.查找二叉树的性质 1).所有非叶子结点至多拥有两个儿子(Left和Right): 2).所有结点存储一个关键字: 3).非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 2.contains 方法 如果树T中含有节点X,那么返回true,如果节点不存在返回false(并且在左子树或右子树进行递归调用); 3.findMin和findMax方法 finMin是从根节点向左儿子进行,递归调用,终点就是最小的元素; findMax是从根节…