[bzoj2732][HNOI2012]射箭】的更多相关文章

Description 沫沫最近在玩一个二维的射箭游戏,如下图所示,这个游戏中的$x$轴在地面,第一象限中有一些竖直线段作为靶子,任意两个靶子都没有公共部分,也不会接触坐标轴.沫沫控制一个位于$(0,0)$的弓箭手,可以朝$0$至$90$°中的任意角度(不包括$0$°$,90$°),以任意大小的力量射出带有穿透能力的光之箭.由于游戏中没有空气阻力,并且光之箭没有箭身,箭的轨迹会是一条标准的抛物线,被轨迹穿过的所有靶子都认为被沫沫射中了,包括那些只有端点被射中的靶子.这个游戏有多种模式,其中沫沫最…
这题乍一看与半平面交并没有什么卵联系,然而每个靶子都可以转化为两个半平面. scanf("%lf%lf%lf",&x,&ymin,&ymax); 于是乎就有ymin<=ax^2+bx<=ymax.(因为抛物线一定经过点(0,0),所以c=0) 考虑前一个有ax^2+bx>=ymin  <=>  ax^2+bx-ymin>=0. #define A x^2 #define B x #define C ymin #define x…
2732: [HNOI2012]射箭 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2532  Solved: 849[Submit][Status][Discuss] Description 沫沫最近在玩一个二维的射箭游戏,如下图 1 所示,这个游戏中的 x 轴在地面,第一象限中有一些竖直线段作为靶子,任意两个靶子都没有公共部分,也不会接触坐标轴.沫沫控制一个位于(0,0)的弓箭手,可以朝 0 至 90?中的任意角度(不包括 0度和 90度),…
https://www.lydsy.com/JudgeOnline/problem.php?id=2732 https://www.luogu.org/problemnew/show/P3222#sub 沫沫最近在玩一个二维的射箭游戏,如下图 1 所示,这个游戏中的 x 轴在地面,第一象限中有一些竖直线段作为靶子,任意两个靶子都没有公共部分,也不会接触坐标轴. 沫沫控制一个位于(0,0)的弓箭手,可以朝 0 至 90度中的任意角度(不包括 0度和 90度),以任意大小的力量射出带有穿透能力的光之…
题目描述 给出二维平面上n个与y轴平行的线段,求最大的k,使得存在一条形如$y=ax^2+bx(a<0,b>0)$的抛物线与前k条线段均有公共点 输入 输入文件第一行是一个正整数N,表示一共有N关.接下来有N行,第i+1行是用空格隔开的三个正整数xi,yi1,yi2(yi1<yi2 ),表示第i关出现的靶子的横坐标是xi,纵坐标的范围是从yi1到yi2 . 输入保证30%的数据满足N≤100,50%的数据满足N≤5000,100%的数据满足N≤100000且给 出的所有坐标不超过109…
Description 沫沫最近在玩一个二维的射箭游戏,如下图 1 所示,这个游戏中的 x 轴在地面,第一象限中有一些竖直线段作为靶子,任意两个靶子都没有公共部分,也不会接触坐标轴.沫沫控制一个位于(0,0)的弓箭手,可以朝 0 至 90?中的任意角度(不包括 0度和 90度),以任意大小的力量射出带有穿透能力的光之箭.由于游戏中没有空气阻力,并且光之箭没有箭身,箭的轨迹会是一条标准的抛物线,被轨迹穿过的所有靶子都认为被沫沫射中了,包括那些 只有端点被射中的靶子.这个游戏有多种模式,其中沫沫最喜…
很久没写题解了= =,来水一发吧= = 首先这道题很明显就是求y=ax^2+bx的是否有值取,每一个式子都代表着两个半平面,然后直接半平面交就行了 借鉴了hzwer的代码,还是特别简洁的说 CODE: #include<cstdio> #include<iostream> #include<algorithm> #include<cstring> #include<cmath> using namespace std; typedef pair&…
洛谷题目传送门 设抛物线方程为\(y=ax^2+bx(a<0,b>0)\),我们想要求出一组\(a,b\)使得它尽可能满足更多的要求.这个显然可以二分答案. 如何check当前的\(mid\)是否合法呢?每一个限制条件形如\(y_{i_1}\le ax_i^2+bx_i\le y_{i_2}\),也就是\(\frac{y_{i_1}}{x_i}\le x_ia+b\le \frac{y_{i_2}}{x_i}\).把\(a,b\)看成自变量,实际上每个不等式就是一个半平面,我们需要求出半平面交…
设抛物线方程\(y = ax^2 + bx\), 那么对于一个靶子\((x_i,y_{down},y_{up})\)我们需要满足的条件就是 \(\frac{y_{down}}{x_i} \leq ax_i + b \leq \frac{y_{up}}{x_i}\), 实际上可以看做二维平面上的一个半平面, 然后我们二分能打到的最远距离, 我们只需要求出这些半平面是否有交就好了 当然我们要把ab的合法范围勾选出来, 满足, a < 0, b > 0 #include<cstdio>…
几何题,二次函数,化一下式子吧 设二次函数\(y=ax^2+bx\),对于一个线段\((x,y1)\),\((x,y2)\),与他相交的条件是\(y1<=ax^2+bx<=y2\) 对于\(ax^2+bx>=y1\),可以化为变量为\(a,b\)的一次函数\(b>=xa+\frac{y1}{x}\),这可以表示成(a-b)平面上的一个半平面... 如果一些线段的半平面交不为空,就说明存在一条抛物线可以经过他们 二分答案判断,时间复杂度\(O(nlogn)\) #include<…