这是CVPR 2019的一篇oral. 预备知识点:Geometric median 几何中位数 \begin{equation}\underset{y \in \mathbb{R}^{n}}{\arg \min } \sum_{i=1}^{m}\left\|x_{i}-y\right\|\end{equation} 可以理解为距离给定点集欧式距离之和最近的点.这篇博客中有关于几何中位数的介绍:https://www.cnblogs.com/ybiln/p/4175695.html. 文中指出之…
ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky University of Toronto 多伦多大学 kriz@cs.utoronto.ca Ilya Sutskever University of Toronto 多伦多大学 ilya@cs.utoronto.ca Geoffrey E. Hinton University of Toront…
论文标题:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 论文作者:Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam 论文地址:https://arxiv.org/abs/1704.04861…
The Impact of Imbalanced Training Data for Convolutional Neural Networks Paulina Hensman and David Masko 摘要 本论文从实验的角度调研了训练数据的不均衡性对采用CNN解决图像分类问题的性能影响.CIFAR-10数据集包含10个不同类别的60000个图像,用来构建不同类间分布的数据集.例如,一些训练集中包含一个类别的图像数目与其他类别的图像数目比例失衡.用这些训练集分别来训练一个CNN,度量其得…
1. 文章内容概述 本人精读了事件抽取领域的经典论文<Event Extraction via Dynamic Multi-Pooling Convolutional Neural Network>,并作出我的读书报告.这篇论文由中科院自动化所赵军.刘康等人发表于ACL2015会议,提出了用CNN模型解决事件抽取任务. 在深度学习没有盛行之前,解决事件抽取任务的传统方法,依赖于较为精细的特征设计已经一系列复杂的NLP工具,并且泛化能力较低.针对此类问题,这篇论文提出了一个新颖的事件抽取方法,能…
UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS  ICLR 2016  摘要:近年来 CNN 在监督学习领域的巨大成功 和 无监督学习领域的无人问津形成了鲜明的对比,本文旨在链接上这两者之间的缺口.提出了一种 deep convolutional generative adversarial networks (DCGANs),that have certai…
分类的数据大小:1.2million 张,包括1000个类别. 网络结构:60million个参数,650,000个神经元.网络由5层卷积层,其中由最大值池化层和三个1000输出的(与图片的类别数相同)全链接层组成. 选用非饱和神经元和高性能的GPU来增强卷积操作.为防止在全链接层发生过拟合,我们进行规则化 'dropout'操作,效果明显. 1.说明: 通过改变卷积神经网络的深度和宽度可以控制网络自身的容量.卷积网络可以更准确的预测图片的本质(图像统计上的不变性和像素级的局部性). 相比具有相…
这篇论文提出了AlexNet,奠定了深度学习在CV领域中的地位. 1. ReLu激活函数 2. Dropout 3. 数据增强 网络的架构如图所示 包含八个学习层:五个卷积神经网络和三个全连接网络,并且使用了最大池化. RELU非线性层 传统的神经网络的输出包括$tanh$ 和 $ y = (1+e^{-x})^{-1}$,namely sigmoid. 在训练阶段的梯度下降的过程中, 饱和的非线性层比非饱和的非线性层下降得更慢. -- RELU 可以加快训练的速度,与饱和非线性函数相比达到相同…
这个论文应该算是把深度学习应用到图片识别(ILSVRC,ImageNet large-scale Visual Recognition Challenge)上的具有重大意义的一篇文章.因为在之前,人们一直质疑深度学习的强大有能力. 大家看看它的引用数目就知道它很厉害了,,9000多的引用.. 作者为:Hinton的学生与Hioton: Krizhevsky ASutskever IHinton GE 要想训练好一个深层的神经网络,需要 :很大的 datasets, 很强大的硬件,很好的抵制ove…
引言 传统的3D卷积神经网络(CNN)计算成本高,内存密集,容易过度拟合,最重要的是,需要改进其特征学习能力.为了解决这些问题,我们提出了整流局部相位体积(ReLPV)模块,它是标准3D卷积层的有效替代方案.所述ReLPV 块提取相在3D局部邻域(例如,\(3×3×3\))输入图的每个位置以获得特征图.通过在每个位置的3D局部邻域中的多个固定低频点处计算3D短期傅里叶变换(STFT)来提取相位.然后,在通过激活函数之后,在不同频率点处的这些特征图被线性组合.所述ReLPV块提供至少,显著参数节约…