[论文标题]Deep Learning based Recommender System: A Survey and New Perspectives ( ACM Computing Surveys · July 2017) [论文作者] SHUAI ZHANG, University of New South WalesLINA YAO, University of New South WalesAIXIN SUN, Nanyang Technological UniversityYI TAY…
(聊两句,突然记起来以前一个学长说的看论文要能够把论文的亮点挖掘出来,合理的进行概括23333) 传统的推荐系统方法获取的user-item关系并不能获取其中非线性以及非平凡的信息,获取非线性以及非平凡的信息恰恰是深度学习所具备的特点.论文对基于深度的学习的推荐系统方法进行了对比以及分类.文章的主要贡献有以下三点: > 对基于深度学习技术的推荐模型进行系统评价,并提出一种分类和组织当前工作的分类方案. > 提供现有技术的概述和总结 > 我们讨论挑战和开放性问题,并确定本研究中的新趋势和未…
Predicting effects of noncoding variants with deep learning–based sequence model PDF Interpreting noncoding variants- 非常好的学习资料 这篇文章的第一个亮点就是直接从序列开始分析,第二就是使用深度学习获得了很好的预测效果. This is, to our knowledge, the first approach for prioritization of functional…
论文地址:面向基于深度学习的语音增强模型压缩 论文代码:没开源,鼓励大家去向作者要呀,作者是中国人,在语音增强领域 深耕多年 引用格式:Tan K, Wang D L. Towards model compression for deep learning based speech enhancem…
目录 abstract 1. introduction 1.1 个性衡量方法 1.2 应用前景 1.3 伦理道德 2. Related works 3. Baseline methods 3.1 文本 3.2 音频 3.3 图像 3.4 多模态 4. Detailed overview 4.1 文本 4.1.1 LIWC/MRC 4.1.2 Receptiviti API 4.1.3 社交网络文本研究 4.1.4 深度神经网络应用 4.1.5 SenticNet 5 4.1.6 weighted…
Motivation: The lack of transparency of the deep  learning models creates key barriers to establishing trusts to the model or effectively troubleshooting classification errors Common methods on non-security applications: forward propagation / back pr…
接着上一篇,这篇研究实验和结果. A.用于评估漏洞检测系统的指标 TP:为正确检测到漏洞的样本数量 FP:为检测到虚假漏洞样本的数量(误报) FN:为未检真实漏洞的样本数量(漏报) TN:未检测到漏洞样本的数量 这篇文献广泛使用指标假阳性率(FPR),假阴性率(FNR),真阳性率或者召回率(TPR),精确度(P)和F1-measure来评估漏洞检测系统[39]. FPR=FP/(FP+TN)指标衡量的是假阳性率漏洞占不容易受到攻击的整个群体样本的比例(在非脆弱样本中误报比率): FNR=FN/(…
接着上一篇,讨论讨论具体步骤实现方法.步骤1-3分别在下面进行阐述,步骤4,6都是标准的,步骤5类似于步骤1-3. 结合这个图进行讨论详细步骤: 步骤1:提取库/API函数调用和程序片段 1.1将库/API函数调用分为两类:前向调用和后向调用,前向库/API函数调用是直接从外部输入接受一个或者多个输入的函数调用,例如命令行,程序,套接字或文件.后向库/API函数调用是不直接从程序运行的环境接受任何外部输入的函数调用.图中显示了一个后向库/API函数调用strcpy的示例(第9行),它是一个后向库…
本篇文献作者提出了一种基于深度学习来检测软件漏洞的方案.       摘要:作者开始基于深度学习的漏洞检测研究,是为了减轻专家手工定义特性的繁琐任务,需要制定一些指导性原则来适用于深度学习去进行漏洞探测.出于这个目的,作者用代码 gadgets 来代表程序,然后把它们转化为向量,其中代码gadget是一些彼此语义相关的代码行.基于这设计了评估系统VulDeePecker,作者为深度学习方法提供了最初始的漏洞数据集,实验结果表明:与其他方法相比,系统能够实现更少的误报,将系统用于Xen,Seamo…
转自:http://www.jeremydjacksonphd.com/category/deep-learning/ Deep Learning Resources Posted on May 13, 2015   Videos Deep Learning and Neural Networks with Kevin Duh: course page NY Course by Yann LeCun: 2014 version, 2015 version NIPS 2015 Deep Learn…