前几章在不知道原理的情况下,已经学会使用了多个机器学习模型机器算法.Scikit-Learn很方便,以至于隐藏了太多的实现细节. 知其然知其所以然是必要的,这有利于快速选择合适的模型.正确的训练算法.合适的超参数.了解底层有助于更有效率地调试问题以及平台错误. 本章从现行回归模型开始,讨论两种不同的训练方式: 直接使用解析解,例如一元二次方差的求根公式. 有些数学问题(比如大多数偏微分方程)是没有数值解的,这时候就要用数值解来近似求解.有时间为了效率,解释存在解析解,也是求近似的数值解. 4.1…