keras用法】的更多相关文章

关于Keras的“层”(Layer) 所有的Keras层对象都有如下方法: layer.get_weights():返回层的权重(numpy array) layer.set_weights(weights):从numpy array中将权重加载到该层中,要求numpy array的形状与* layer.get_weights()的形状相同 layer.get_config():返回当前层配置信息的字典,层也可以借由配置信息重构: Input(shape=None,batch_shape=Non…
提示:建议先看day36-38的内容 TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor).它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等. TensorFlow 最初由Google大脑小组(隶属于Google机器智能研究机构)的研究员和工程师们开发出来,用于机…
Keras 是一个高层神经网络API,Keras是由纯Python编写而成并基于TensorFlow,Theano以及CNTK后端.Keras为支持快速实验而生,能够将我们的idea迅速转换为结果.好了不吹了,下面继续学习Keras的一些用法,其中这篇博客包括了Keras如何指定显卡且限制显存用量,还有一些常见函数的用法及其问题,最后是使用Keras进行的练习. Keras如何指定显卡且限制显存用量 Keras在使用GPU的时候有个特点,就是默认全部占满显存.若单核GPU也无所谓,若是服务器GP…
TensorFlow Keras API用法 Keras 是与 TensorFlow 一起使用的更高级别的作为后端的 API.添加层就像添加一行代码一样简单.在模型架构之后,使用一行代码,可以编译和拟合模型,可以用于预测.变量声明.占位符甚至会话都由 API 管理. 具体做法 定义模型的类型.Keras 提供了两种类型的模型:序列和模型类 API.Keras 提供各种类型的神经网络层: 在 model.add() 的帮助下将层添加到模型中.依照 Keras 文档描述,Keras 提供全连接层的选…
搬运: https://stackoverflow.com/questions/57610804/when-is-the-timing-to-use-sample-weights-in-keras import tensorflow as tf import numpy as np data_size = 100 input_size=3 classes=3 x_train = np.random.rand(data_size ,input_size) y_train= np.random.ra…
Keras 是与 TensorFlow 一起使用的更高级别的作为后端的 API.添加层就像添加一行代码一样简单.在模型架构之后,使用一行代码,你可以编译和拟合模型.之后,它可以用于预测.变量声明.占位符甚至会话都由 API 管理. 具体做法 定义模型的类型.Keras 提供了两种类型的模型:序列和模型类 API.Keras 提供各种类型的神经网络层:   在 model.add() 的帮助下将层添加到模型中.依照 Keras 文档描述,Keras 提供全连接层的选项(针对密集连接的神经网络):…
TimeDistributed这个层还是比较难理解的.事实上通过这个层我们可以实现从二维像三维的过渡,甚至通过这个层的包装,我们可以实现图像分类视频分类的转化. 考虑一批32个样本,其中每个样本是一个由16个维度组成的10个向量的序列.该层的批输入形状然后(32, 10, 16). 可以这么理解,输入数据是一个特征方程,X1+X2+...+X10=Y,从矩阵的角度看,拿出未知数,就是10个向量,每个向量有16个维度,这16个维度是评价Y的16个特征方向. TimeDistributed层的作用就…
软件环境(Windows): Visual Studio Anaconda CUDA MinGW-w64 conda install -c anaconda mingw libpython CNTK TensorFlow-gpu Keras-gpu Theano MKL CuDNN 参考书籍:谢梁 , 鲁颖 , 劳虹岚.Keras快速上手:基于Python的深度学习实战 Keras 简介 Keras 这个名字来源于希腊古典史诗<奥德赛>的牛角之门(Gate of Horn):Those tha…
\ 函数式模型接口 为什么叫"函数式模型",请查看"Keras新手指南"的相关部分 Keras的函数式模型为Model,即广义的拥有输入和输出的模型,我们使用Model来初始化一个函数式模型 from keras.models import Model from keras.layers import Input, Dense a = Input(shape=(32,)) b = Dense(32)(a) model = Model(inputs=a, output…
Sequential模型接口 如果刚开始学习Sequential模型,请首先移步这里阅读文档,本节内容是Sequential的API和参数介绍. 常用Sequential属性 model.layers是添加到模型上的层的list Sequential模型方法 add add(self, layer) 向模型中添加一个层 layer: Layer对象 pop pop(self) 弹出模型最后的一层,无返回值 compile compile(self, optimizer, loss, metric…