十分钟一起学会ResNet残差网络】的更多相关文章

作者 | 荔枝boy 目录 深层次网络训练瓶颈:梯度消失,网络退化 ResNet简介 ResNet解决深度网络瓶颈的魔力 ResNet使用的小技巧 总结 深层次网络训练瓶颈:梯度消失,网络退化 深度卷积网络自然的整合了低中高不同层次的特征,特征的层次可以靠加深网络的层次来丰富.从而,在构建卷积网络时,网络的深度越高,可抽取的特征层次就越丰富.所以一般我们会倾向于使用更深层次的网络结构,以便取得更高层次的特征.但是在使用深层次的网络结构时我们会遇到两个问题,梯度消失,梯度爆炸问题和网络退化的问题.…
1.GoogleNet 网络: Inception V1 - Inception V2 - Inception V3 - Inception V4 1. Inception v1 split - merge - 1*1卷积,3*3卷积, 5*5卷积, 3*3池化 输入层:inception 1*1 卷积 1*1卷积 - 3*3卷积 1*1卷积 - 5*5卷积 3*3 maxpooling - 1*1 卷积 2个辅助分类器 深网络中,梯度回传到最初几层,存在严重消失问题 有效加速收敛 测试阶段不适…
作者 | 荔枝boy 编辑 | 安可 一.Inception网络简介 二.Inception网络模块 三.Inception网络降低参数计算量 四.Inception网络减缓梯度消失现象 五.Inception网络框架 六.Inception论文彩蛋 一.Inception网络简介 Inception网络又叫做GoogLeNet,之所以不叫GoogleNet,是为了向LeNet致敬,是2014年ChristianSzegedy在<Going deeper with convolutions>提…
LazyPHP(以下简称LP)是一个轻框架. 之所以开发这么一个框架,是因为其他框架给的太多.在高压力的情况下,ORM和盘根错节的对象树反而将简单的页面请求处理复杂化,在调试和性能上带来反面效果. LP采用函数式接口封装对象,对内通过面向对象实现代码重用,对外则提供简明扼要的操作函数.开发者甚至不用理解面向对象就能很好的使用,这让一些初级程序员很容易就开发出强壮的应用. 在数据库等模块的加载上,LP采用LazyLoad方式,并用$GLOBALS实现全局单件,在方便和高效之间找到了一个平衡点.这也…
https://github.com/tornadomeet/ResNet 图片地址: data/trian/cifar10_cifar10.rec data/train/cifar10_val.rec 看情况,可能要强转一下uits[i] - 1 为 int 型 整个代码还是很高质量的(垃圾代码,真香),不过是原生的mxnet写的,要看一下原生mxnet 的写法…
本文写给主要工作在Windows操作系统下而又需要开发一些跨平台软件的程序员朋友,以及程序爱好者. GDB是一个由GNU开源组织发布的.UNIX/LINUX操作系统下的.基于命令行的.功能强大的程序调试工具. GDB中的命令固然很多,但我们只需掌握其中十个左右的命令,就大致可以完成日常的基本的程序调试工作.  命令  解释  示例 file <文件名> 加载被调试的可执行程序文件.因为一般都在被调试程序所在目录下执行GDB,因而文本名不需要带路径. (gdb) file gdb-sample…
在学习Python的各种工具包的时候,看网上的各种教程总是感觉各种方法很多很杂,参数的种类和个数也十分的多,理解起来需要花费不少的时间. 所以我在这里通过几个例子,对方法和每个参数都进行详细的解释,这样对于0基础的人也可以快速的掌握Matplotlib基本图形操作. 首先导入numpy和matplotlib包 import numpy as np import matplotlib.pyplot as plt %matplotlib inline # 使图形可以直接在notebook上显示 首先…
深度残差网络—ResNet总结 写于:2019.03.15—大连理工大学 论文名称:Deep Residual Learning for Image Recognition 作者:微软亚洲研究院的何凯明等人             论文地址:https://arxiv.org/pdf/1512.03385v1.pdf 摘要: 随着人们对于神经网络技术的不断研究和尝试,每年都会诞生很多新的网络结构或模型.这些模型大都有着经典神经网络的特点,但是又会有所变化.你说它们是杂交也好,是变种也罢,总之针对…
残差网络ResNet resnet是何凯明大神在2015年提出的.并且获得了当年的ImageNet比赛的冠军. 残差网络具有里程碑的意义,为以后的网络设计提出了一个新的思路. googlenet的思路是加宽每一个layer,resnet的思路是加深layer. 论文地址:https://arxiv.org/abs/1512.03385 论文里指出,随着网络深度的增加,模型表现并没有更好,即所谓的网络退化.注意,不是过拟合,而是更深层的网络即便是train error也比浅层网络更高. 这说明,深…
这篇文章主要介绍了Symfony学习十分钟入门教程,详细介绍了Symfony的安装配置,项目初始化,建立Bundle,设计实体,添加约束,增删改查等基本操作技巧,需要的朋友可以参考下 (此文章已被多人复制转载,原文为我们老板写的"十分钟学会Symfony",不过GItHub已经清理了,所以今天我重新整理一下,不过基本不变) Symfony是一个强大的基于PHP的Web开发框架,在这里我们用十分钟的时间来做一个简单的增删改查的程序, 任何不熟悉Symfony的人都可以通过这个教程完成自己…
opencv中提供的基于haar特征级联进行人脸检测的方法效果非常不好,本文使用dlib中提供的人脸检测方法(使用HOG特征或卷积神经网方法),并使用提供的深度残差网络(ResNet)实现实时人脸识别,不过本文的目的不是构建深度残差网络,而是利用已经训练好的模型进行实时人脸识别,实时性要求一秒钟达到10帧以上的速率,并且保证不错的精度.opencv和dlib都是非常好用的计算机视觉库,特别是dlib,前面文章提到了其内部封装了一些比较新的深度学习方法,使用这些算法可以实现很多应用,比如人脸检测.…
发现博客园也可以支持Markdown,就把我之前写的博客搬过来了- 欢迎转载,请注明出处:http://www.cnblogs.com/alanma/p/6877166.html 下面是正文: Deep Residual Learning for Image Recognition 1. 思想 作者根据输入将层表示为学习残差函数.实验表明,残差网络更容易优化,并且能够通过增加相当的深度来提高准确率. 核心是解决了增加深度带来的副作用(退化问题),这样能够通过单纯地增加网络深度,来提高网络性能.…
一说起“深度学习”,自然就联想到它非常显著的特点“深.深.深”(重要的事说三遍),通过很深层次的网络实现准确率非常高的图像识别.语音识别等能力.因此,我们自然很容易就想到:深的网络一般会比浅的网络效果好,如果要进一步地提升模型的准确率,最直接的方法就是把网络设计得越深越好,这样模型的准确率也就会越来越准确. 那现实是这样吗?先看几个经典的图像识别深度学习模型: 这几个模型都是在世界顶级比赛中获奖的著名模型,然而,一看这些模型的网络层次数量,似乎让人很失望,少则5层,多的也就22层而已,这些世界级…
tmux 是一款终端复用命令行工具,一般用于 Terminal 的窗口管理.在 macOS 下,使用 iTerm2 能应付绝大多数窗口管理的需求. 如上图所示,iTerm2 能新建多个标签页(快捷键 ⌘T),也能在同一个窗口中分割出多个窗格(快捷键 ⌘D 或 ⌘⇧D). tmux 相比 iTerm2 的优势在于: iTerm2 的窗格切换快捷键(⌘⌥→)容易与其他软件全局快捷键冲突(例如 Spectacle 的窗口分割快捷键),tmux 由于存在前缀快捷键,所以不存在快捷键冲突问题: tmux…
如何评价Dual Path Networks(DPN)? 论文链接:https://arxiv.org/pdf/1707.01629v1.pdf在ImagNet-1k数据集上,浅DPN超过了最好的ResNeXt-101(64×4d),具有26%更小的模型尺寸,25%的计算成本和8%的更低的内存消耗 5 个回答 xiaozhi CV.ML.DL   1.针对视觉识别任务的“网络工程”一直是研究的重点,其重在设计更为高效的网络拓扑结构,一方面考虑更好的特征表示学习,另一方面尽可能减少计算复杂度和内存…
题外话: From <白话深度学习与TensorFlow> 深度残差网络: 深度残差网络的设计就是为了克服这种由于网络深度加深而产生的学习效率变低,准确率无法有效提升的问题(也称为网络退化). 甚至在一些场景下,网络层数的增加反而会降低正确率.这种本质问题是由于出现了信息丢失而产生的过拟合问题(overfitting,所建的机器学习模型或者是深度学习模型在训练样本中表现的过于优越,导致在验证数据集及测试数据集中表现不佳,即为了得到一致假设而使假设变得过度复杂).解决思路是尝试着使他们引入这些刺…
引言 对于传统的深度学习网络应用来说,网络越深,所能学到的东西越多.当然收敛速度也就越慢,训练时间越长,然而深度到了一定程度之后就会发现越往深学习率越低的情况,甚至在一些场景下,网络层数越深反而降低了准确率,而且很容易出现梯度消失和梯度爆炸. 这种现象并不是由于过拟合导致的,过拟合是在训练集中把模型训练的太好,但是在新的数据中表现却不尽人意的情况.从上图可以看出,我们的训练准误差和测试误差在层数增加后皆变大了,这说明当网络层数变深后,深度网络变得难以训练. 如果大家还没理解的话,那我讲细一点,网…
我们都知道随着神经网络深度的加深,训练过程中会很容易产生误差的积累,从而出现梯度爆炸和梯度消散的问题,这是由于随着网络层数的增多,在网络中反向传播的梯度会随着连乘变得不稳定(特别大或特别小),出现最多的还是梯度消散问题.残差网络解决的就是随着深度增加网络性能越来越差的问题. resnet中最典型的模块就是上面的部分,通过这样一个“短路”的方式,使得短路前的层再差也能保证其训练好,即,如果被短路的层能被训练好(能提升网络性能),则保留其路线,否则跳过它们不进行训练 在resnet的这样一个短路un…
写在前面 ​ 深度残差网络(Deep residual network, ResNet)自提出起,一次次刷新CNN模型在ImageNet中的成绩,解决了CNN模型难训练的问题.何凯明大神的工作令人佩服,模型简单有效,思想超凡脱俗. ​ 直观上,提到深度学习,我们第一反应是模型要足够"深",才可以提升模型的准确率.但事实往往不尽如人意,先看一个ResNet论文中提到的实验,当用一个平原网络(plain network)构建很深层次的网络时,56层的网络的表现相比于20层的网络反而更差了.…
深度学习--手动实现残差网络 辛普森一家人物识别 目标 通过深度学习,训练模型识别辛普森一家人动画中的14个角色 最终实现92%-94%的识别准确率. 数据 ResNet介绍 论文地址 https://arxiv.org/pdf/1512.03385.pdf 残差网络(ResNet)是微软亚洲研究院的何恺明.孙剑等人2015年提出的,它解决了深层网络训练困难的问题.利用这样的结构我们很容易训练出上百层甚至上千层的网络. 残差网络的提出,有效地缓解了深度学习两个大问题 梯度消失:当使用深层的网络时…
初试牛刀 假设你希望学习Python这门语言,却苦于找不到一个简短而全面的入门教程.那么本教程将花费十分钟的时间带你走入Python的大门.本文的内容介于教程(Toturial)和速查手册(CheatSheet)之间,因此只会包含一些基本概念.很显然,如果你希望真正学好一门语言,你还是需要亲自动手实践的.在此,我会假定你已经有了一定的编程基础,因此我会跳过大部分非Python语言的相关内容.本文将高亮显示重要的关键字,以便你可以很容易看到它们.另外需要注意的是,由于本教程篇幅有限,有很多内容我会…
初试牛刀 假设你希望学习Python这门语言,却苦于找不到一个简短而全面的入门教程.那么本教程将花费十分钟的时间带你走入Python的大门.本文的内容介于教程(Toturial)和速查手册(CheatSheet)之间,因此只会包含一些基本概念.很显然,如果你希望真正学好一门语言,你还是需要亲自动手实践的.在此,我会假定你已经有了一定的编程基础,因此我会跳过大部分非Python语言的相关内容.本文将高亮显示重要的关键字,以便你可以很容易看到它们.另外需要注意的是,由于本教程篇幅有限,有很多内容我会…
初试牛刀 假设你希望学习Python这门语言,却苦于找不到一个简短而全面的入门教程.那么本教程将花费十分钟的时间带你走入Python的大门.本文的内容介于教程(Toturial)和速查手册(CheatSheet)之间,因此只会包含一些基本概念.很显然,如果你希望真正学好一门语言,你还是需要亲自动手实践的.在此,我会假定你已经有了一定的编程基础,因此我会跳过大部分非Python语言的相关内容.本文将高亮显示重要的关键字,以便你可以很容易看到它们.另外需要注意的是,由于本教程篇幅有限,有很多内容我会…
初试牛刀 如果你希望学习Python这门语言.却苦于找不到一个简短而全面的新手教程.那么本教程将花费十分钟的时间带你走入Python的大门.本文的内容介于教程(Toturial)和速查手冊(CheatSheet)之间,因此仅仅会包括一些基本概念.非常显然,如果你希望真正学好一门语言,你还是须要亲自己主动手实践的.在此,我会假定你已经有了一定的编程基础.因此我会跳过大部分非Python语言的相关内容.本文将高亮显示重要的keyword.以便你能够非常easy看到它们.另外须要注意的是.因为本教程篇…
注:平原改为简单堆叠网络 一般x是恒等映射,当x与fx尺寸不同的时候,w作用就是将x变成和fx尺寸相同. 过程: 先用w将x进行恒等映射.扩维映射或者降维映射d得到wx.(没有参数,不需要优化器训练),然后再使用优化器调整这个残差网络,这个时候优化器需要付出的effort就更小了.搜索空间更小,更容易训练 resnets不会发生过拟合! 不训练整体映射,只训练残差映射.…
十分钟学习自然语言处理概述 作者:白宁超 2016年9月23日00:24:12 摘要:近来自然语言处理行业发展朝气蓬勃,市场应用广泛.笔者学习以来写了不少文章,文章深度层次不一,今天因为某种需要,将文章全部看了一遍做个整理,也可以称之为概述.关于这些问题,博客里面都有详细的文章去介绍,本文只是对其各个部分高度概括梳理.(本文原创,转载注明出处:十分钟学习自然语言处理概述  ) 1 什么是文本挖掘? 文本挖掘是信息挖掘的一个研究分支,用于基于文本信息的知识发现.文本挖掘的准备工作由文本收集.文本分…
GraphX原型论文 GraphX是Spark中用于图(e.g., Web-Graphs and Social Networks)和图并行计算(e.g., PageRank and Collaborative Filtering)的API,可以认为是GraphLab(C++)和Pregel(C++)在Spark(Scala)上的重写及优化,跟其他分布式图计算框架相比,GraphX最大的贡献是,在Spark之上提供一栈式数据解决方案,可以方便且高效地完成图计算的一整套流水作业. GraphX最先是…
引言:如何快速分析纷繁复杂的数据?如何快速做出老板满意的报表?如何快速将Speed-BI云平台运用到实际场景中?         本课程将通过各行各业案例背景,将Speed-BI云平台运用到实际场景中,通过熟练使用云平台可视化技巧,将枯燥的数字灵活化.可动化:通过统计图表的应用,将灵活可动的图表多样化.专业化,全方位多视角观察.分析案例相关数据,达到报表目的清晰.界面简洁.可分析维度多.反馈性强等目标,操作过程从数据整理至报表生成一步到位,主要涉及分析意图挖掘.指标判断选择.适用图表选择.多维度…
1. 什么是残差(residual)? “残差在数理统计中是指实际观察值与估计值(拟合值)之间的差.”“如果回归模型正确的话, 我们可以将残差看作误差的观测值.” 更准确地,假设我们想要找一个 $x$,使得 $f(x) = b$,给定一个 $x$ 的估计值 $x_0$,残差(residual)就是 $b-f(x_0)$,同时,误差就是 $x-x_0$. 即使 $x$ 不知道,我们仍然可以计算残差,只是不能计算误差罢了. 2. 什么是残差网络(Residual Networks,ResNets)?…