PyTorch 实战-用 Numpy 热身】的更多相关文章

Numpy provides an n-dimensional array object, and many functions for manipulating these arrays. Numpy is a generic framework for scientific computing; it does not know anything about computation graphs, or deep learning, or gradients. However we can…
最近在学习PyTorch框架,买了一本<深度学习之PyTorch实战计算机视觉>,从学习开始,小编会整理学习笔记,并博客记录,希望自己好好学完这本书,最后能熟练应用此框架. PyTorch是美国互联网巨头Facebook在深度学习框架Torch的基础上使用Python重写的一个全新的深度学习框架,它更像NumPy的替代产物,不仅继承了NumPy的众多优点,还支持GPUs计算,在计算效率上要比NumPy有更明显的优势:不仅如此,PyTorch还有许多高级功能,比如拥有丰富的API,可以快速完成深…
PyTorch 实战:计算 Wasserstein 距离 2019-09-23 18:42:56 This blog is copied from: https://mp.weixin.qq.com/s/nTUKYNxdiPK3xdOoSXvTJQ 最优传输理论及 Wasserstein 距离是很多读者都希望了解的基础,本文主要通过简单案例展示了它们的基本思想,并通过 PyTorch 介绍如何实战 W 距离. 机器学习中的许多问题都涉及到令两个分布尽可能接近的思想,例如在 GAN 中令生成器分布…
计算机视觉.自然语言处理和语音识别是目前深度学习领域很热门的三大应用方向. 计算机视觉学习,推荐阅读<深度学习之PyTorch实战计算机视觉>.学到人工智能的基础概念及Python 编程技能,掌握PyTorch 的使用方法,学到深度学习相关的理论知识,比如卷积神经网络.循环神经网络.自动编码器,等等.在掌握深度学习理论和编程技能之后,还会学到如何基于PyTorch 深度学习框架实战计算机视觉.<深度学习之PyTorch实战计算机视觉>中的大量实例在循序渐进地学习的同时,不断地获得成…
上一节,我们已经学会了基于PyTorch深度学习框架高效,快捷的搭建一个神经网络,并对模型进行训练和对参数进行优化的方法,接下来让我们牛刀小试,基于PyTorch框架使用神经网络来解决一个关于手写数字识别的计算机视觉问题,评价我们搭建的模型的标准是它是否能准确的对手写数字图片进行识别. 其具体的过程是:先使用已经提供的训练数据对搭建好的神经网络模型进行训练并完成参数优化,然后使用优化好的模型对测试数据进行预测,对比预测值和真实值之间的损失值,同时计算出结果预测的准确率.在将要搭建的模型中会使用到…
任务描述:利用前9小时数据,预测第10小时的pm2.5的数值,回归任务 kaggle地址:https://www.kaggle.com/c/ml2020spring-hw1 训练集为: 12个月*20天*18维(共4320行) , 24小时(列) 每月的前20天 test为: 18*240行, 9 列 每月的后10天随机采样连续9小时 宏观上理解: 一.X和y什么样的 一个batch中,X可以是18维*9列,对应一个数值y,即第10小时的pm2.5的值 为了方便操作,可以把x拉成一个行向量,18…
一.卷积: 卷积在 pytorch 中有两种方式: [实际使用中基本都使用 nn.Conv2d() 这种形式] 一种是 torch.nn.Conv2d(), 一种是 torch.nn.functional.conv2d(), 这两种形式本质都是使用一个卷积操作,这两种形式的卷积对于输入的要求都是一样的,首先需要输入是一个 torch.autograd.Variable() 的类型,大小是 (batch, channel, H, W),其中 batch 表示输入的一批数据的数目,第二个是输入的通道…
在上一篇博客CNN核心概念理解中,我们以LeNet为例介绍了CNN的重要概念.在这篇博客中,我们将利用著名深度学习框架PyTorch实现LeNet5,并且利用它实现手写体字母的识别.训练数据采用经典的MNIST数据集.本文主要分为两个部分,一是如何使用PyTorch实现LeNet模型,二是实现数据准备.定义网络.定义损失函数.训练.测试等完整流程. 一.LeNet模型定义 LeNet是识别手写字母的经典网络,虽然年代久远,但从学习的角度仍不失为一个优秀的范例.要实现这个网络,首先来看看这个网络的…
Numpy 是一个非常好的框架,但是不能用 GPU 来进行数据运算. Numpy is a great framework, but it cannot utilize GPUs to accelerate its numerical computations. For modern deep neural networks, GPUs often provide speedups of 50x or greater, so unfortunately numpy won't be enough…
代码和ppt: https://github.com/Iallen520/lhy_DL_Hw 遇到的一些细节问题: 1. X_train文件不带后缀名csv,所以不是规范的csv文件,不能直接用pd.read_csv,否则发现第一行名有错误,所以用原始的方法去处理 2. 记着拆分train和test,是有必要的. 3. 数据类型转换,第一次是numpy array的转换,从str转到float,第二次是pytorch数据初始化时,注意:预测问题的y是用的二维数据,float类型. 但是分类问题,…
上一篇博客先搭建了基础环境,并熟悉了基础知识,本节基于此,再进行深一步的学习. 接下来看看如何基于PyTorch深度学习框架用简单快捷的方式搭建出复杂的神经网络模型,同时让模型参数的优化方法趋于高效.如同使用PyTorch中的自动梯度方法一样,在搭建复杂的神经网络模型的时候,我们也可以使用PyTorch中已定义的类和方法,这些类和方法覆盖了神经网络中的线性变换.激活函数.卷积层.全连接层.池化层等常用神经网络结构的实现.在完成模型的搭建之后,我们还可以使用PyTorch提供的类型丰富的优化函数来…
从官网拷贝过来的,就是做个学习记录.版本 0.4 tensor to numpy a = torch.ones(5) print(a) 输出 tensor([1., 1., 1., 1., 1.]) 进行转换 b = a.numpy() print(b) 输出 [1. 1. 1. 1. 1.] 注意,转换后的tensor与numpy指向同一地址,所以,对一方的值改变另一方也随之改变 a.add_(1) print(a) print(b) numpy to tensor import numpy…
一.分类任务: 将以下两类分开. 创建数据代码: # make fake data n_data = torch.ones(100, 2) x0 = torch.normal(2*n_data, 1) # class0 x data (tensor), shape=(100, 2) y0 = torch.zeros(100) # class0 y data (tensor), shape=(100, 1) x1 = torch.normal(-2*n_data, 1) # class1 x da…
一.回归任务介绍: 拟合一个二元函数 y = x ^ 2. 二.步骤: 导入包 创建数据 构建网络 设置优化器和损失函数 前向和后向传播训练网络 画图 三.代码: 导入包: import torch from torch.autograd import Variable import torch.nn.functional as F import matplotlib.pyplot as plt 创建数据 #torch中的数据要是二维的,unsqueeze是将一维数据转化成二维数据 tmp =…
NumPy库函数基础: 机器学习算法涉及很多线性代数知识. NumPy库中有很多线性代数计算. 之所以用到线性代数只是为了简化不同的数据点上执行的相同数学运算.将数据表示为矩阵形式, 只需要执行简单的矩阵运算而不需要复杂的循环操作. randMat =mat(random.rand(4,4)) 数据驱动产业:…
各位20级新同学好,我安排的课程没有教材,只有一些视频.论文和代码.大家可以看看大纲,感兴趣的同学参加即可.因为是第一次开课,大纲和进度会随时调整,同学们可以随时关注.初步计划每周两章,一个半月完成课程. Part 1 : 课程大纲 第一章 绪论 1.1 从专家系统到机器学习 1.2 从传统机器学习到深度学习 1.3 深度学习的能与不能 1.4 pytorch 基础 第二章 神经网络基础 2.1 浅层神经网络:生物神经元到单层感知器,多层感知器,反向传播和梯度消失 2.2 神经网络到深度学习:逐…
GitHub代码练习地址:https://github.com/Neo-ML/MachineLearningPractice/blob/master/Pytorch01_LinearRegression.py 有关线性回归的公式及相关代码实现: Step1: 代码实现为: Step2:单步梯度下降 代码实现为: Step3: 开始梯度下降迭代: Step4: 拟定好各种参数,开始运行:…
前言:译者实测 PyTorch 代码非常简洁易懂,只需要将中文分词的数据集预处理成作者提到的格式,即可很快的就迁移了这个代码到中文分词中,相关的代码后续将会分享. 具体的数据格式,这种方式并不适合处理很多的数据,但是对于 demo 来说非常友好,把英文改成中文,标签改成分词问题中的 "BEMS" 就可以跑起来了. # Make up some training data training_data = [( "the wall street journal reported…
2018/9/18更新  感觉tensorboardX插件更好用,已转用https://github.com/lanpa/tensorboardX 更新:新版visdom0.1.7安装方式为:conda install -c srivasv visdom pytorch下可采用visidom作为可视化工具 1. 安装 pip install visdomconda install visdom 启动 python -m visdom.server 在浏览器输入:http://localhost:…
2017 年初,Facebook 在机器学习和科学计算工具 Torch 的基础上,针对 Python 语言发布了一个全新的机器学习工具包 PyTorch. 因其在灵活性.易用性.速度方面的优秀表现,经过2年多的发展,目前 PyTorch 已经成为从业者最重要的研发工具之一. 现在为大家奉上出 60 分钟极速入门 PyTorch 的小教程,助你轻松上手 PyTorch!大家也可直接在实验楼学习:PyTorch 深度学习基础课程. PyTorch 基础 PyTorch 使用一种称之为 imperat…
文章来自微信公众号[机器学习炼丹术]. 上一节课,讲解了MNIST图像分类的一个小实战,现在我们继续深入学习一下pytorch的一些有的没的的小知识来作为只是储备. 参考目录: @ 目录 1 pytorch数据结构 1.1 默认整数与浮点数 1.2 dtype修改变量类型 1.3 变量类型有哪些 1.4 数据类型转换 2 torch vs numpy 2.1 两者转换 2.2 两者区别 3 张量 3.1 张量修改尺寸 3.2 张量内存存储结构 3.3 存储区 3.4 头信息区 1 pytorch…
通过范例学习 PyTorch 本博文通过几个独立的例子介绍了 PyTorch 的基础概念. 其核心,PyTorch 提供了两个主要的特征: 一个 n-维张量(n-dimensional Tensor),类似 NumPy 但是可以运行在 GPU 设备上 构建和训练神经网络,可自动求微分 我们将使用三阶多项式去拟合 y=sin(x) 的问题作为我们的例子.神经网络将会有 4 个参数,并且将使用梯度下降通过最小化(minimizing)网络输出和真实输出的欧氏距离(Euclidean distance…
PyTorch全连接ReLU网络 1.PyTorch的核心是两个主要特征: 一个n维张量,类似于numpy,但可以在GPU上运行 搭建和训练神经网络时的自动微分/求导机制 本文将使用全连接的ReLU网络作为运行示例.该网络将有一个单一的隐藏层,并将使用梯度下降训练,通过最小化网络输出和真正结果的欧几里得距离,来拟合随机生成的数据. 2.张量 2.1 热身: Numpy 在介绍PyTorch之前,将首先使用numpy实现网络. Numpy提供了一个n维数组对象,以及许多用于操作这些数组的函数.Nu…
Pytorch实现波阻抗反演 1 引言 地震波阻抗反演是在勘探与开发期间进行储层预测的一项关键技术.地震波阻抗反演可消除子波影响,仅留下反射系数,再通过反射系数计算出能表征地层物性变化的物理参数.常用的有道积分.广义线性反演.稀疏脉冲反演.模拟退火反演等技术. 随着勘探与开发的深入,研究的地质目标已经从大套厚层砂体转向薄层砂体,而利用常规波阻抗反演方法刻画薄层砂体不仅要消耗大量人力.物力,且反演得到的波阻抗精度也难以满足实际需求.近年来,深度学习在地震反演和解释等地震领域显现出了巨大的潜力,其中…
转载请注明: 仰望高端玩家的小清新 http://www.cnblogs.com/luruiyuan/ 如何解决pytorch 编译时CUDA版本与运行时CUDA版本不对应 如果pytorch的编译时CUDA版本和运行时CUDA版本不一致时,由于不同的 nvcc 编译器会生成不同的动态函数代码,由此会导致自己编写的 CUDA 函数无法正确运行. 常见的错误有: undefined symbol: __cudaRegisterFatBinaryEnd (运行时为CUDA10.1,编译时CUDA版本…
文章来源: https://zhuanlan.zhihu.com/p/35675109 https://www.aiuai.cn/aifarm646.html 之前用pytorch是手动记录数据做图,总是觉得有点麻烦.学习了一下tensorboardX,感觉网上资料有点杂,记录一下重点.由于大多数情况只是看一下loss,lr,accu这些曲线,就先总结这些,什么images,audios以后需要再总结. 1.安装:有各种方法,docker安装,使用logger.py脚本调用感觉都不简洁.现在的t…
C/C++中 Python 扩展对象的简介 你可能知道可以借助 C/C++扩展 Python,并开发所谓的「扩展」.PyTorch 的所有繁重工作由 C/C++实现,而不是纯 Python.为了定义 C/C++中一个新的 Python 对象类型,你需要定义如下实例的一个类似结构: // Python object that backs torch.autograd.Variable structTHPVariable{ PyObject_HEAD torch::autograd::Variabl…
原文地址:https://github.com/Kaixhin/grokking-pytorch PyTorch is a flexible deep learning framework that allows automatic differentiation(自动求导) through dynamic neural networks (i.e., networks that utilise dynamic control flow like if statements and while…
目录 0. 摘要 1. 简介 2. 背景 3. 设计原则 4. 针对易用性的核心设计 4.1 让深度学习模块不过是Python程序 4.2 互用性和可拓展性 4.3 自动差分 5. 针对高性能的PyTorch实现 5.1 高效的C++核 5.2 分而治之 5.3 定制的张量分配缓存 5.4 多进程 5.5 Reference counting 终于可以引用PyTorch了! 0. 摘要 深度学习框架要么关注易用性,要么关注速度,很少同时关注二者.但PyTorch作为一个机器学习库,同时做到了这两…
阅读文档:使用 PyTorch 进行深度学习:60分钟快速入门. 本教程的目标是: 总体上理解 PyTorch 的张量库和神经网络 训练一个小的神经网络来进行图像分类 PyTorch 是个啥? 这是基于 Python 的科学计算包,其目标是: 替换 NumPy,发挥 GPU 的作用 一个提供最大灵活性和速度的深度学习研究平台 起步 PyTorch 中的 Tensor 类似于 NumPy 中的 ndarray(这一点类似于 TensorFlow),只不过张量可以充分利用 GPU 来进行加速计算.…