dense向量和稀疏向量sparse】的更多相关文章

import org.apache.spark.mllib.linalg.Vectors object Test { def main(args: Array[String]) { val vd = Vectors.dense(2, 5, 8) println(vd(1)) println(vd) //向量个数,序号,value val vs = Vectors.sparse(4, Array(0, 1, 2, 3), Array(9, 3, 5, 7)) println(vs(0)) //序号…
spark-mllib 密集向量和稀疏向量 MLlib支持局部向量和矩阵存储在单台服务器,也支持存储于一个或者多个rdd的分布式矩阵 . 局部向量和局部矩阵是用作公共接口的最简单的数据模型. 基本的线性代数运算由Breeze提供. 在监督学习中使用的训练示例在MLlib中称为"标记点". 因此,向量和 矩阵,标记点是 spark-mllib基本的数据模型,也是学习sparl-mllib的基础. 局部向量 一个局部向量具有存储在单个机器上的integer整数类型的基于0的索引和doubl…
spark mlib中2种局部向量:denseVector(稠密向量)和sparseVector(稀疏向量) denseVector向量的生成方法:Vector.dense() sparseVector向量的生成方法: (1):Vector.sparse(向量长度,索引数组,与索引数组所对应的数值数组) (2):Vector.sparse(向量长度,(索引,数值),(索引,数值),...(索引,数值)) 例子:向量(5.2,0.0,5.5) 稠密向量:Vector.dense(5.2,0.0,5…
Spark mlib的本地向量有两种: DenseVctor   :稠密向量   其创建方式   Vector.dense(数据) SparseVector :稀疏向量   其创建方式有两种: 方法一:Vector.sparse(向量长度,索引数组,与索引数组所对应的数值数组) 方法二:Vector.sparse(向量长度,(索引,数值),(索引,数值),(索引,数值),...(索引,数值)) 示例: 比如向量(1,0,3,4)的创建有三种方法: 稠密向量:直接Vectors.dense(1,0…
1.局部向量 Mllib支持2种局部向量类型:密集向量(dense)和稀疏向量(sparse). 密集向量由double类型的数组支持,而稀疏向量则由两个平行数组支持. example: 向量(5.2,0.0,5.5) 密集向量表示:[5.2,0.0,5.5] 稀疏向量表示:(3,[0,2],[5.2,5.5])    # 3是向量(5.2,0.0,5.5)的长度,除去0值外,其他两个值的索引和值分别构成了数组[0,2]和数组[5.2,5.5]. Vector是所有局部向量的基类,Dense-V…
不多说,直接上干货! 具体,见 Spark Mllib机器学习实战的第4章 Mllib基本数据类型和Mllib数理统计…
http://mocom.xmu.edu.cn/article/show/58481eb2e083c990247075a5/0/1 1. /创建一个标签为1.0(分类中可视为正样本)的稠密向量标注点 scala> val pos = LabeledPoint(1.0, Vectors.dense(2.0, 0.0, 8.0)) pos: org.apache.spark.mllib.regression.LabeledPoint = (1.0,[2.0,0.0,8.0]) //创建一个标签为0.…
TF-IDF的向量表示的稀疏问题 之前在看tf-idf代码时候思考了一个问题,不知道对于初学的大部分同学有没有这样一个疑惑,用tf-idf值构成的向量,维度可能跟词表的大小有关,那么对于一句话来说,这样的向量表示是不是太稀疏了? 例如,对于下面的数据(文档),词表大小为32个词,那么我们每一句话(eg:['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'])将用32维的向量表示,但是这句话中只涉及7个词,其余25个位置全为0,这样岂不…
稀疏表示_百度百科 https://baike.baidu.com/item/%E7%A8%80%E7%96%8F%E8%A1%A8%E7%A4%BA/16530498 信号稀疏表示是过去近20年来信号处理界一个非常引人关注的研究领域,众多研究论文和专题研讨会表明了该领域的蓬勃发展.信号稀疏表示的目的就是在给定的超完备字典中用尽可能少的原子来表示信号,可以获得信号更为简洁的表示方式,从而使我们更容易地获取信号中所蕴含的信息,更方便进一步对信号进行加工处理,如压缩.编码等 [1]  .   中文名…
17.8 稀疏调拨的内存映射文件 17.8.1 稀疏文件简介 (1)稀疏文件(Sparse File):指的是文件中出现大量的0数据,这些数据对我们用处不大,但是却一样的占用空间.NTFS文件系统对此进行了优化,那些无用的0字节被用一定的算法压缩起来.例如声明一个很大的稀疏文件(如100GB),这个文件实际上并不需要占用那么大的空,内部都是一些无用的0数据,那么NTFS就会利用算法释放这些无用的0字节空间,这是对磁盘占用空间的一种优化.但要注意FAT32并不支持稀疏文件的压缩. (2)与稀疏文件…
通过spark rdd 求取  特征的稀疏向量 spark 类标签的稀疏 特征向量 - bonelee - 博客园 http://www.cnblogs.com/bonelee/p/7814081.html…
学习underscore.js数组相关API的时候.遇到了sparse array这个东西,曾经没有接触过. 这里学习下什么是稀疏数组和密集数组. 什么是密集数组呢?在java和C语言中,数组是一片连续的存储空间,有着固定的长度.增加数组事实上位置是address.长度为n.那么占用的存储空间是address[0],address[1],address[2].......address[n-1].即数组元素之间是紧密相连的,不存在空隙.例如以下的js代码创建的就是一个密集数组 var data…
稀疏编码来源于神经科学,计算机科学和机器学习领域一般一开始就从稀疏编码算法讲起,上来就是找基向量(超完备基),但是我觉得其源头也比较有意思,知道根基的情况下,拓展其应用也比较有底气.哲学.神经科学.计算机科学.机器学习科学等领域的砖家.学生都想搞明白人类大脑皮层是如何处理外界信号的,大脑对外界的“印象”到底是什么东东.围绕这个问题,哲学家在那想.神经科学家在那用设备观察.计算机和机器学习科学家则是从数据理论和实验仿真上推倒.仿真.在神经编码和神经计算领域,我所能查到最早关于稀疏编码的文献是199…
生成字符向量的过程中需要注意: 1)在收集数据生成corpus时候,通过Word2Vec生成字向量的时候,产生了“ ”空格字符向量,但是加载模型是不会成功的.那么你不是生成的binary文件,就可以修改此文件,更改或删除. 示例参考代码如下: import os import gensim from gensim.models import word2vec from sklearn.decomposition import PCA import numpy as np import loggi…
fsutils file createnew  a.dat 1073741824 fsutil sparse setflag a.dat fsutil sparse setrange a.dat 0 1073741824 结果是1个外边显示1G.实际4K大小的文件,酷~ 如下图…
为了更进一步的清晰理解大脑皮层对信号编码的工作机制(策略),须要把他们转成数学语言,由于数学语言作为一种严谨的语言,能够利用它推导出期望和要寻找的程式.本节就使用概率推理(bayes views)的方式把稀疏编码扩展到随时间变化的图像上,由于人类或者哺乳动物在日常活动中通过眼睛获取的信号是随时间变化而变化的,对于此类信号仍然有一些稀疏系数和基能够描写叙述他们,同类型的处理方式也有慢特征分析(slow features analysis).废话不多说了,进入正题: 我们把图像流(图像序列)看成时空…
Spark机器学习MLlib系列1(for python)--数据类型,向量,分布式矩阵,API 关键词:Local vector,Labeled point,Local matrix,Distributed matrix,RowMatrix,IndexedRowMatrix,CoordinateMatrix,BlockMatrix. 前言:MLlib支持本地向量和存储在单机上的矩阵,当然也支持被存储为RDD的分布式矩阵.一个有监督的机器学习的例子在MLlib里面叫做标签点. 1. 本地向量 一…
本来这篇是准备5.15更的,但是上周一直在忙签证和工作的事,没时间就推迟了,现在终于有时间来写写Learning Spark最后一部分内容了. 第10-11 章主要讲的是Spark Streaming 和MLlib方面的内容.我们知道Spark在离线处理数据上的性能很好,那么它在实时数据上的表现怎么样呢?在实际生产中,我们经常需要即使处理收到的数据,比如实时机器学习模型的应用,自动异常的检测,实时追踪页面访问统计的应用等.Spark Streaming可以很好的解决上述类似的问题. 了解Spar…
1.  MLlib Apache Spark's scalable machine learning library, with APIs in Java, Scala and Python. 2.   数据类型 本地向量,标注点,本地矩阵,分布式矩阵 3. 本地向量 Local Vector 稠密向量 dense        一个double数组,例如 (1.0, 0.0, 0.0, 0.0, 3.0) 稀疏向量 sparse       两个并行的数组(indices和values),例如…
Data Types - MLlib(数据类型)       MLlib支持存储在单机上的局部向量和局部矩阵,也可以支持通过一个或多个RDD(可伸缩数据集)表示的分布式矩阵.局部向量和局部矩阵是用作公共接口的简单数据模型,实际上底层的线性代数运算由Breeze (机器学习和数值运算的Scala库)和 jblas (Java线性代数运算库)提供.在有监督机器学习中,MLlib使用标记点(labeled point)来表示单个训练语料.   局部向量[Local vector]: 局部向量存储在单机…
Spark Sreaming与MLlib机器学习 本来这篇是准备5.15更的,但是上周一直在忙签证和工作的事,没时间就推迟了,现在终于有时间来写写Learning Spark最后一部分内容了. 第10-11 章主要讲的是Spark Streaming 和MLlib方面的内容.我们知道Spark在离线处理数据上的性能很好,那么它在实时数据上的表现怎么样呢?在实际生产中,我们经常需要即使处理收到的数据,比如实时机器学习模型的应用,自动异常的检测,实时追踪页面访问统计的应用等.Spark Stream…
本文测试的Spark版本是1.3.1 在使用Spark的机器学习算法库之前,需要先了解Mllib中几个基础的概念和专门用于机器学习的数据类型 特征向量Vector: Vector的概念是和数学中的向量是一样的,通俗的看其实就是一个装着Double数据的数组 Vector分为两种,分别是密集型和稀疏型 创建方式如下: val array:Array[Double] = ... val vector = Vector.dense(array)//创建密集向量 val vector = Vector.…
数据类型--基于RDD的API 本地矢量 标记点 本地矩阵 分布式矩阵 RowMatrix(行矩阵) IndexedRowMatrix(索引行矩阵) CoordinateMatrix(坐标矩阵) BlockMatrix(块矩阵) MLlib 支持存储在单台机器上的本地向量和矩阵,以及由一个或多个 RDD 支持的分布式矩阵.本地向量和本地矩阵是用作公共接口的简单数据模型.有监督学习中使用的训练示例在MLlib中称为"标记点". 一.本地矢量(Local Vector) MLlib 支持两…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .机器学习概念 1.1 机器学习的定义 在维基百科上对机器学习提出以下几种定义: l“机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能”. l“机器学习是对能通过经验自动改进的计算机算法的研究”. l“机器学习是用数据或以往的经验,以此优化计算机程序的性能标准.” 一种经常引用的英文定义是:A computer program is said t…
然后看的是机器学习这一块,因为偏理论,可以先看完.其他的实践,再看. http://www.cnblogs.com/shishanyuan/p/4747761.html “机器学习是用数据或以往的经验,以此优化计算机程序的性能标准.” 一种经常引用的英文定义是:A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P,…
数据结构术语中英文对照 数据 Data 数据元素 Data element 数据项 Data item 数据结构 Data structure 逻辑结构 Logical structure 数据类型 Data type 指针 Pointer 顺序存储结构 Sequential storage structure 链状存储结构 Linked storage structure 稠密索引 Dense index 稀疏索引 Sparse index 抽象数据类型 Abstract DataType 算…
Spark学习之基于MLlib的机器学习 1. 机器学习算法尝试根据训练数据(training data)使得表示算法行为的数学目标最大化,并以此来进行预测或作出决定. 2. MLlib完成文本分类任务步骤: (1)首先用字符串RDD来表示你的消息 (2)运行MLlib中的一个特征提取(feature extraction)算法来把文本数据转换为数值特征(适合机器学习算法处理):该操作会返回一个向量RDD. (3)对向量RDD调用分类算法(比如逻辑回归):这步会返回一个模型对象,可以使用该对象对…
Spark MLlib架构解析 MLlib的底层基础解析 MLlib的算法库分析 分类算法 回归算法 聚类算法 协同过滤 MLlib的实用程序分析 从架构图可以看出MLlib主要包含三个部分: 底层基础:包括Spark的运行库.矩阵库和向量库: 算法库:包含广义线性模型.推荐系统.聚类.决策树和评估的算法: 实用程序:包括测试数据的生成.外部数据的读入等功能. MLlib的底层基础解析 底层基础部分主要包括向量接口和矩阵接口,这两种接口都会使用Scala语言基于Netlib和BLAS/LAPAC…
http://blog.csdn.net/canglingye/article/details/41316193 [相互转换]:http://stackoverflow.com/questions/32456808/sparsevector-to-densevector-conversion-in-pyspark 1.稀疏矩阵和稠密矩阵可以转换成数组 2.数组可以转换成稠密矩阵 3.稀疏矩阵不能直接转换为稠密矩阵,需要先转换为数组:但是,数组和稠密矩阵都不能直接转换为稀疏矩阵 from pysp…
不多说,直接上干货! Local  vector : 本地向量集 由两类构成:稀疏型数据集(spares)和密集型数据集(dense) (1).密集型数据集 例如一个向量数据(9,5,2,7),可以设定为(9,5,2,7)进行存储,数据集被作为一个集合的形式整体存储. (2).稀疏型数据集 例如一个向量数据(9,5,2,7),可以按向量的大小存储为(4,Array(0,1,2,3),Array(9,5,2,7))  testVector.scala package zhouls.bigdata.…