大规模机器学习(Large Scale Machine Learning) 大型数据集的学习(Learning With Large Datasets) 如果你回顾一下最近5年或10年的机器学习历史.学习算法现在比5年前更好地工作的原因之一就是我们现在拥有了大量的数据,可以用来训练我们的算法.那么为什么要使用这么大的数据集呢?我们已经看到,获得高性能机器学习系统的最佳方法之一就是采用低偏差的学习算法,并且用大量的数据进行训练. 因此,如上图中,我们已经看到过的一个早期的在可混淆的单词之间进行分类…
一.如何学习大规模数据集? 在训练样本集很大的情况下,我们可以先取一小部分样本学习模型,比如m=1000,然后画出对应的学习曲线.如果根据学习曲线发现模型属于高偏差,则应在现有样本上继续调整模型,具体调整策略参见第六节的高偏差时模型如何调整:如果发现模型属于高方差,则可以增加训练样本集. 二.随机梯度下降法(Stochastic Gradient Descent) 之前在讲到优化代价函数的时候,采取的都是“批量梯度下降法”Batch Gradient,这种方法在每次迭代的时候,都需要计算所有的训…
17.1  大型数据集的学习 17.2  随机梯度下降法 17.3  微型批量梯度下降 17.4  随机梯度下降收敛 17.5  在线学习 17.6  映射化简和数据并行 17.1  大型数据集的学习…
17.1  大型数据集的学习 17.2  随机梯度下降法 17.3  微型批量梯度下降 17.4  随机梯度下降收敛 17.5  在线学习 17.6  映射化简和数据并行 17.1  大型数据集的学习 17.2  随机梯度下降法 17.3  微型批量梯度下降 17.4  随机梯度下降收敛 17.5  在线学习 17.6  映射化简和数据并行…
Lecture17 Large Scale Machine Learning大规模机器学习 17.1 大型数据集的学习 Learning With Large Datasets 如果有一个低方差的模型, 通常通过增加数据集的规模,可以获得更好的结果. 但是如果数据集特别大,则首先应该检查这么大规模是否真的必要,也许只用 1000个训练集也能获得较好的效果,可以绘制学习曲线来帮助判断. 17.2 随机梯度下降法 Stochastic Gradient Descent 如果必须使用一个大规模的训练集…
原文:http://googleresearch.blogspot.jp/2010/04/lessons-learned-developing-practical.html Lessons learned developing a practical large scale machine learning system Tuesday, April 06, 2010 Posted by Simon Tong, Google Research When faced with a hard pre…
本博客是针对Andrew Ng在Coursera上的machine learning课程的学习笔记. 目录 在大数据集上进行学习(Learning with Large Data Sets) 随机梯度下降(Stochastic Gradient Descent) 小堆梯度下降(Mini-Batch Gradient Descent) 保证随机GD的收敛与学习速率的选择 在线学习(Online Learning) Map Reduce 和 数据并行化 在大数据集上进行学习(Learning wit…
本栏目来源于Andrew NG老师讲解的Machine Learning课程,主要介绍大规模机器学习以及其应用.包括随机梯度下降法.维批量梯度下降法.梯度下降法的收敛.在线学习.map reduce以及应用实例:photo OCR.课程地址为:https://www.coursera.org/course/ml (一)大规模机器学习 从前面的课程我们知道,如果我们的系统是high variance的,那么增加样本数会改善我们的系统,假设现在我们有100万个训练样本,可想而知,如果使用梯度下降法,…
一.随机梯度下降算法 之前了解的梯度下降是指批量梯度下降:如果我们一定需要一个大规模的训练集,我们可以尝试使用随机梯度下降法(SGD)来代替批量梯度下降法. 在随机梯度下降法中,我们定义代价函数为一个单一训练实例的代价: 随机梯度下降算法为:首先对训练集随机“洗牌”,然后: 下面是随机梯度下降算法的过程以及和批量梯度下降算法的异同: 随机梯度下降算法是先只对第1个训练样本计算一小步的梯度下降,即这个过程包括调参过程,然后转向第2个训练样本,对第2个训练样本计算一小步的梯度下降,这个过程也包括调参…
主要内容: 一.Batch gradient descent 二.Stochastic gradient descent 三.Mini-batch gradient descent 四.Online learning 五.Map-reduce and data parallelism 一.Batch gradient descent batch gradient descent即在损失函数对θ求偏导时,用上了所有的训练集数据(假设有m个数据,且m不太大).这种梯度下降方法也是我们之前一直使用的.…