LBP纹理特征[转自]】的更多相关文章

LBP方法(Local binary patterns)是一个计算机视觉中用于图像特征分类的一个方法.LBP方法在1994年首先由T. Ojala, M.Pietikäinen, 和 D. Harwood 提出,用于纹理特征提取.后来LBP方法与HOG特征分类器联合使用,改善了一些数据集[45]上的检测效果. 对LBP特征向量进行提取的步骤如下: 首先将检测窗口划分为16×16的小区域(cell),对于每个cell中的一个像素,将其环形邻域内的B个点(也可以是环形邻域多个点,如下图,使用LBP算…
LBP-Local Binary Pattern,局部二值模式. 灰度不变性 改进:圆形LBP.旋转不变性 MB-LBP特征,多尺度Multiscale Block LBP: [转载自] 目标检测的图像特征提取之(二)LBP特征 - 莫小 - 博客园 https://www.cnblogs.com/nsnow/p/4461998.html LBP原理介绍以及算法实现 - holly的专栏 - CSDN博客 https://blog.csdn.net/heli200482128/article/d…
1.直方图 用于计算图片特征,表达, 使得数据具有总结性, 颜色直方图对数据空间进行量化,好比10个bin 2. 聚类 类内对象的相关性高 类间对象的相关性差 常用算法:kmeans, EM算法, meanshift, 谱聚类(密度聚类), 层次聚类 kmeans聚类 选取k个类中心,随机选取 计算每个点跟k个类中心的位置 把数据点分配给距离最近的一个类中心 计算新的类中心-对该类中的所有点取均值 类中心数K的选取 K类平均质心的距离加权平均值, 当k=5时的斜率发生变化,我们可以选取5作为分类…
[图像算法]图像特征:GLCM SkySeraph Aug 27th 2011  HQU Email:zgzhaobo@gmail.com    QQ:452728574 Latest Modified Date:Aug 27th 2011 HQU -----------------------------------------------------------------------------------------------------------------------------…
参考博客:https://blog.csdn.net/xue_wenyuan/article/details/51533953 https://blog.csdn.net/jinshengtao/article/details/17797641 傅里叶变换是一种信号处理中的有力工具,可以帮助我们将图像从空域转换到频域,并提取到空域上不易提取的特征.但是经过傅里叶变换后, 图像在不同位置的频度特征往往混合在一起,但是Gabor滤波器却可以抽取空间局部频度特征,是一种有效的纹理检测工具. 在图像处理…
使用图聚类方法:Malware Classification using Graph Clustering 见 https://github.com/rahulp0491/Malware-Classifier 代码参考:https://github.com/bindog/ToyMalwareClassification,https://github.com/xiaozhouwang/kaggle_Microsoft_Malware #微软恶意代码分类 比赛说明和数据下载 https://www.…
图像中通常采用自相关函数作为纹理测度 自相关函数的定义为: ​ 调用自定义函数 zxcor()对砖墙面和大理石面纹理进行分析: 自定义函数 zxcor(): function [epsilon,eta,C] = zxcor( f,D,m,n ) % 自相关函数zxcor(),f为读入的图像数据,D为偏移距离,[m,n]是图像的尺寸数据,返回图像相关函数C的值 % epsilon和eta是自相关函数C的偏移变量 for epsilon=1:D for eta=1:D temp = 0; fp =…
灰度差分统计特征有: 平均值:​ 对比度:​ 熵:​ i表示某一灰度值,p(i)表示图像取这一灰度值的概率 close all;clear all;clc; % 纹理图像的灰度差分统计特征 J = imread('qiang1.jpg'); A = double(J); [m,n] = size(A); B = A; C = zeros(m,n); for i=1:m-1 for j=1:n-1 B(i,j) = A(i+1,j+1); C(i,j) = abs(round(A(i,j)-B(i…
参考原文: http://blog.csdn.net/zouxy09/article/details/7929531 http://www.cnblogs.com/dwdxdy/archive/2012/05/31/2528941.html http://blog.csdn.net/dujian996099665/article/details/8886576 LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子:它具有旋转不变性和灰度不变性等显著…
本文根据论文:Fuzzy Integral for Moving Object Detection-FUZZ-IEEE_2008的内容及自己的理解而成,如果想了解更多细节,请参考原文.在背景建模中,我们对于像素的分类总是采用非此即彼的方式来分,即该像素要么是背景要么是前景.然而,由于噪声.光照变化以及阴影等特殊情况导致像素会存在错误,即像素存在一定的不确定性.为了处理这种不确定性,本文提出了基于模型Choquet积分的目标检测算法. 首先,我们来看看这个算法的基本流程,如下图所示. 从上图可以看…
转自:http://blog.csdn.net/carson2005/article/details/6979806 尽管之前写过一篇关于OpenCV的介绍(http://blog.csdn.net/carson2005/article/details/5822149),但依然有朋友对其不甚了解.所以,经常能碰到有人问我诸如以下一些问题:OpenCV能不能实现人脸识别?OpenCV有没有车辆检测的API?OpenCV有没有三维重建的函数?面对这样的问题,我也很困惑.到底该如何给他们解释,才能让它…
虽然之前写过一篇关于OpenCV的介绍(http://blog.csdn.net/carson2005/article/details/5822149).但依旧有朋友对其不甚了解.所以,常常能碰到有人问我诸例如以下面一些问题:OpenCV能不能实现人脸识别?OpenCV有没有车辆检測的API?OpenCV有没有三维重建的函数?面对这种问题.我也非常困惑.究竟该怎样给他们解释.才干让它们明确,OpenCV确实非常强大,但还没有他们想象中的那么强大.事实上.OpenCV的全称.是Open sourc…
LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子:它具有旋转不变性和灰度不变性等显著的优点.它是首先由T. Ojala, M.Pietik?inen, 和D. Harwood 在1994年提出,用于纹理特征提取.而且,提取的特征是图像的局部的纹理特征. 1.LBP特征的描述 原始的LBP算子定义在3*3的窗口内,以窗口中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素点的位置被标记为1,否则为0.这样,3…
(一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合 SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal 在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM…
LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像年提出,用于纹理特征提取.而且,提取的特征是图像的局部的纹理特征: 1.LBP特征的描述 原始的LBP算子定义为在3*3的窗口内,以窗口中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素点的位置被标记为1,否则为0.这样,3*3邻域内的8个点经比较可产生8位二进制数(通常转换为十进制数即LBP码,共256种),即得到该窗口中心像素点的LBP值,并用这个值来反映该区域的纹理信息…
(一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合 SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal 在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM…
LBP的全称是Local Binary Pattern即局部二值模式,是局部信息提取中的一种方法,它具有旋转不变性和灰度不变性等显著的优点.在人脸识别领域有很多案例,此外,局部特征的算法还有 SIFT HOG等等. LBP就是一种局部信息,它反应的内容是每个像素与周围像素的关系.举最基本的LBP为例,它反应了像素与周围8个点灰度值的关系,如下图所示: 如上图所示,中间像素的灰度值为54,我们如下定义:当周围像素的灰度值大于等于中间像素值时,则LBP的一位值为1,否则为零.由这个九宫格,我们就得到…
一.LBP特征 LBP指局部二值模式,英文全称:Local Binary Pattern,是一种用来描述图像局部特征的算子,LBP特征具有灰度不变性和旋转不变性等显著优点. 原始的LBP算子定义在像素3*3的邻域内,以邻域中心像素为阈值,相邻的8个像素的灰度值与邻域中心的像素值进行比较,若周围像素大于中心像素值,则该像素点的位置被标记为1,否则为0.这样,3*3邻域内的8个点经过比较可产生8位二进制数,将这8位二进制数依次排列形成一个二进制数字,这个二进制数字就是中心像素的LBP值,LBP值共有…
[普兒原创, 如有错误和纰漏欢迎指正. 更新中...] 1. 颜色直方图 颜色空间在本质上是定义在某种坐标系统下的子空间,空间中的每一个坐标表示一种不同的颜色.颜色空间的目的在于给出某种颜色标准,使得不同的设备和用途都能对颜色有一致的描述.这里主要介绍两种不同的颜色空间,包括RGB颜色空间和CIE-Lab颜色空间,如图4-2所示. (a)RGB颜色空间; (b)CIE-Lab颜色空间 图1 颜色空间示意图 RGB颜色空间是定义在三维笛卡尔坐标系中的颜色模型,每一种颜色定义在3个主颜色分量红(R)…
(一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思…
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/xinzhangyanxiang/article/details/37317863 图像物体检測识别中的LBP特征 1        引言 之前讲了人脸识别中的Haar特征,本文则关注人脸检測中的LBP特征.说是对于人脸检測的,事实上对于其它物体也能检測,仅仅需改动训练数据集就可以. 所以本文的题目是物体检測识别,比方能够检測是否汽车是否有车牌号等. 在opencv实现的haar特征的人脸识别算法中…
此篇摘取 <LBP特征原理及代码实现> <LBP特征 学习笔记> 另可参考实现: <LBP特征学习及实现> <LBP特征的实现及LBP+SVM分类> <目标检测的图像特征提取之(二)LBP特征> 1 LBP特征背景介绍 LBP指局部二值模式,英文全称:Local Binary Pattern,是一种用来描述图像局部特征的算子,LBP特征具有灰度不变性和旋转不变性等显著优点.它是由T. Ojala, M.Pietikäinen, 和 D. Harw…
这几天一直在做人脸识别的项目,有用到LBP特征,但是毫无头绪,师姐这几天也比较忙,没有时间来指导我,随自己找相应的介绍LBP的博文来看,现在总算有了一个大体的思路了,就写下来吧 注:参考博文: 目标检测的图像特征提取之(二)LBP特征       也谈LBP LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子:它具有旋转不变性和灰度不变性等显著的优点.它是首先由T. Ojala, M.Pietikäinen, 和D. Harwood 在1994年…
原文链接:http://blog.csdn.net/zouxy09/article/details/7929531#comments 这个特征或许对三维图像特征提取有很大作用.文章有修改,如有疑问,请拜访原作者. LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子:它具有旋转不变性和灰度不变性等显著的优点.它是首先由T. Ojala, M.Pietikäinen, 和 D. Harwood 在1994年提出,用于纹理特征提取.而且,提取的特征是图…
LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子:它具有旋转不变性和灰度不变性等显著的优点.用于纹理特征提取.而且,提取的特征是图像的局部的纹理特征 1.LBP特征的描述 原始的LBP算子定义为在3*3的窗口内,以窗口中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素点的位置被标记为1,否则为0.这样,3*3邻域内的8个点经比较可产生8位二进制数(通常转换为十进制数即LBP码,共256种),即得到该窗口中…
转自http://blog.csdn.NET/ty101/article/details/8905394 本文的PDF版本,以及涉及到的所有文献和代码可以到下列地址下载: 1.PDF版本以及文献:http://download.csdn.net/detail/ty101/5349816 2.原作者的MATLAB代码:http://download.csdn.net/detail/ty101/5349894 LBP一种用来描述图像纹理特征的算子,该算子由芬兰奥卢大学的T.Ojala等人在1996年…
LBP(Local Binary Pattern),即局部二进制模式,对一个像素点以半径r画一个圈,在圈上取K个点(一般为8),这K个点的值(像素值大于中心点为1,否则为0)组成K位二进制数.此即局部二进制模式,实际中使用的是LBP特征谱的直方统计图.在旧版的Opencv里,使用CvHaarClassifierCascade函数,只支持Harr特征.新版使用CascadeClassifier类,还可以支持LBP特征.Opencv的人脸识别使用的是Extended LBP(即circle_LBP)…
模式识别中进行匹配识别或者分类器分类识别时,判断的依据就是图像特征.用提取的特征表示整幅图像内容,根据特征匹配或者分类图像目标. 常见的特征提取算法主要分为以下3类: 基于颜色特征:如颜色直方图.颜色集.颜色矩.颜色聚合向量等: 基于纹理特征:如Tamura纹理特征.自回归纹理模型.Gabor变换.小波变换.MPEG7边缘直方图等: 基于形状特征:如傅立叶形状描述符.不变矩.小波轮廓描述符等: LBP特征提取算法 LBP(Local Binary Patterns,局部二值模式)是提取局部特征作…
Atitit图像识别的常用特征大总结attilax大总结 1.1. 常用的图像特征有颜色特征.纹理特征.形状特征.空间关系特征. 1 1.2. HOG特征:方向梯度直方图(Histogram of Oriented Gradient, HOG)1 1.3. (二)LBP特征 LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子4 1.4. :它具有旋转不变性和灰度不变性等显著的优点.它是首先由T. Ojala, M.Pietikäinen, 和D.…
与第一篇博文特征脸方法不同,LBP(Local Binary Patterns,局部二值模式)是提取局部特征作为判别依据的.LBP方法显著的优点是对光照不敏感,但是依然没有解决姿态和表情的问题.不过相比于特征脸方法,LBP的识别率已经有了很大的提升.在[1]的文章里,有些人脸库的识别率已经达到了98%+. 1.LBP特征提取 最初的LBP是定义在像素3x3邻域内的,以邻域中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素点的位置被标记为1,否则为0.这样,…