动态规划:LCIS】的更多相关文章

  Virus  We have a log file, which is a sequence of recorded events. Naturally, the timestamps are strictly increasing. However, it is infected by a virus, so random records are inserted (but the order of original events is preserved). The backup log…
题目链接 Solution 动态规划. 令 \(f_{i,j}\) 表示 \(a\) 数组前 \(i\) 个和 \(b\) 数组前 \(j\) 所得的最长的 LCIS . 转移很好想: \(a_i!=b_j :~f_{i,j}=f_{i-1,j}\) \(a_i==b_j :~f_{i,j}=max(f_{i-1,j},f_{i,t(存储位置)}+1)\) 然后最后面 \(f[n][i]\) 中的最大值即为答案. Code #include<bits/stdc++.h> int n,a[502…
D. LCIS 题目连接: http://www.codeforces.com/contest/10/problem/D Description This problem differs from one which was on the online contest. The sequence a1, a2, ..., an is called increasing, if ai < ai + 1 for i < n. The sequence s1, s2, ..., sk is call…
问题 给定两个序列A和B,序列的子序列是指按照索引逐渐增加的顺序,从原序列中取出若干个数形成的一个子集,若子序列的数值大小是逐渐递增的则为上升子序列,若A和B取出的两个子序列A1和B1是相同的,则A1/B1为A和B的公共子序列.求出A和B的最长公共上升子序列. 分析     结合最长公共子序列和最长上升子序列来解决这个问题,定义状态dp[i][j]表示A串中前i个字符和B串中前j个字符且以B[j]为结尾的最长公共上升子序列的长度.则有状态转移方程:[在进行动态规划状态的设计的时候,要简单.详尽的…
先给出状态转移方程: 定义状态 F[i][j]表示以a串的前i个整数与b串的前j个整数且以b[j]为结尾构成的LCIS的长度 状态转移方程: ①F[i][j] = F[i-][j] (a[i] != b[j]) ②F[i][j] = max(F[i-][k]+) ( <= k <= j- && b[j] > b[k]) 这个可以优化到O(n^2)的时间复杂度,然后再滚动数组一下,空间复杂度就可以是O(n)的,这里直接给出最优实现策略 #include<cstdio&…
LCIS模板 #include <cstdio> #include <cstring> #include <iostream> using namespace std; int n; long long a[3005],b[3005],f[3005]; int main() { scanf("%d",&n); for(int i=1; i<=n; i++) scanf("%lld",&a[i]); for(i…
首先介绍一下LIS和LCS的DP解法O(N^2) LCS:两个有序序列a和b,求他们公共子序列的最大长度 我们定义一个数组DP[i][j],表示的是a的前i项和b的前j项的最大公共子序列的长度,那么由于是用迭代法,所以计算DP[i][j]前,DP[i-1][j]和DP[i][j-1]就都已经计算出来了,不难理解就可以得出状态转移方程: DP[i][j]  = DP[i-1][j-1] + 1;   如果a[i] == b[j] MAX(DP[i-1][j], DP[i][j-1])  如果a[i…
我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模型,例如最长上升子序列(LIS).最长公共子序列(LCS).最大子序列和等,那么首先我们从这几个经典的问题出发开始对线性dp的探索. 首先我们来看最长上升子序列问题. 这个问题基于这样一个背景,对于含有n个元素的集合S = {a1.a2.a3……an},对于S的一个子序列S‘ = {ai,aj,ak…
HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS) http://acm.hdu.edu.cn/showproblem.php?pid=1423 题意: 给你两个数字组成的串a和b,要你求出它们的最长公共严格递增子序列的长度(LCIS). 分析: 首先我们令f[i][j]==x表示是a串的前i个字符与b串的前j个字符构成的且以b[j]结尾的LCIS长度. 当a[i]!=b[j]时:        f[i][j]=f[i-1][j…
for(int i = 1;i <= n;i++) { int dpmax = 0; for(int j = 1;j <= m;j++) { dp[i][j] = dp[i-1][j]; if(a[i] > b[j] && dpmax < dp[i-1][j])dpmax = dp[i-1][j]; if(a[i] == b[j])dp[i][j] = dpmax + 1; ret = max(ret,dp[i][j]); } } LCS最长公共子序列: 状态方程是…