tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None,name=None)  上面方法中常用的是前两个参数: 第一个参数 x:指输入: 第二个参数 keep_prob: 设置神经元被选中的概率,在初始化时,keep_prob是一个占位符,keep_prob = tf.placeholder(tf.float32).tensorflow在run时设置keep_prob具体的值,例如keep_prob: 0.5: 第五个参数 name:指定该…
A quick glance through tensorflow/python/layers/core.py and tensorflow/python/ops/nn_ops.pyreveals that tf.layers.dropout is a wrapper for tf.nn.dropout. You want to use the dropout() function in tensorflow.contrib.layers, not the one in tensorflow.n…
tf.nn.dropout:函数官网说明: tf.nn.dropout( x, keep_prob, noise_shape=None, seed=None, name=None ) Defined in tensorflow/python/ops/nn_ops.py. See the guides: Layers (contrib) > Higher level ops for building neural network layers, Neural Network > Activati…
版本: tensorflow-gpu 原因: 在创建session时没有使用我想让它用的gpu 解决方案: 1. 在python程序中: import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" 2. 运行时: CUDA_VISIBLE_DEVICES=0 python **.py 3. 直接在环境变量中 export export CUDA_VISIBLE_DEVICES='0' python **.py…
一. Dropout原理简述: tf.nn.dropout是TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层. Dropout就是在不同的训练过程中随机扔掉一部分神经元.也就是让某个神经元的激活值以一定的概率p,让其停止工作,这次训练过程中不更新权值,也不参加神经网络的计算.但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了.示意图如下: 但在测试及验证中:每个神经元都要参加运算,但其输出要乘以概率p. 二.tf.nn.dropout函数…
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')  # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, strides表示步长,分别表示为样本数,长,宽,通道数,padding表示补零操作 2. tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')  # 对数据进行池化操作 参数说明:x表示输入数据,ksize表示卷…
tf.nn.dropout函数 tf.nn.dropout( x, keep_prob, noise_shape=None, seed=None, name=None ) 定义在:tensorflow/python/ops/nn_ops.py. 请参阅指南:层(contrib)>用于构建神经网络层的高级操作,神经网络>激活函数 该函数用于计算dropout. 使用概率keep_prob,输出按照1/keep_prob的比例放大输入元素,否则输出0.缩放是为了使预期的总和不变. 默认情况下,每个…
一:适用范围: tf.nn.dropout是TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层 二:原理: dropout就是在不同的训练过程中随机扔掉一部分神经元.也就是让某个神经元的激活值以一定的概率p,让其停止工作,这次训练过程中不更新权值,也不参加神经网络的计算.但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了 三:函数介绍: tf.nn.drop(x,  keep_prob, noise_shape=None, seed=Non…
深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- coding: utf-8 -*- """ Created on Fri May 25 14:09:45 2018 @author: Administrator """ #导入数据集 from tensorflow.examples.tutoria…
bilibili莫烦tensorflow视频教程学习笔记 1.初次使用Tensorflow实现一元线性回归 # 屏蔽警告 import os os.environ[' import numpy as np import tensorflow as tf # create dataset x_data = np.random.rand(100).astype(np.float32) y_data = x_data * 2 + 5 ### create tensorflow structure St…