首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
[bzoj] 2694 Lcm || 莫比乌斯反演
】的更多相关文章
[bzoj] 2694 Lcm || 莫比乌斯反演
原题 定义整数a,b,求所有满足条件的lcm(a,b)的和: 1<=a<=A 1<=b<=B ∀n>1,n2†gcd(a,b)(即任意n>1,\(n^2\)不是gcd(a,b)的约数) 输出答案对2^30取模. 要求gcd(a,b)不能含平方因子,所以gcd(a,b)一定是mu不等于0的数. 那么我们设所有满足条件的数为p 其余与bzoj 2693是一样的,推倒见这里! //敲公式累死了-- #include<cstdio> #include<algo…
BZOJ 2694: Lcm 莫比乌斯反演 + 积性函数 + 线性筛 + 卡常
求 $\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)\mu(gcd(i,j))^2$ $\Rightarrow \sum_{d=1}^{n}\mu(d)^2\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{ij}{d}[gcd(i,j)==d]$ $\Rightarrow \sum_{d=1}^{n}\mu(d)^2\frac{1}{d}\sum_{i=1}^{n}\sum_{j=1}^{m}ij[gcd(i,j)==d]$ $\Right…
BZOJ 2694: Lcm [莫比乌斯反演 线性筛]
题意:求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m lcm(i,j)\ : gcd(i,j) 是sf 无平方因子数\) 无平方因子数?搞一个\(\mu(gcd(i,j))\)不就行了..不对不对有正负,是\(\mu^2\)才行 套路推♂倒 (ノ*・ω・)ノ \[ \begin{align*} \sum\limits_{i=1}^n \sum\limits_{j=1}^m \frac{ij}{gcd(i,j)} \mu(gcd(i,j))^2 &=\sum_…
bzoj [SDOI2014]数表 莫比乌斯反演 BIT
bzoj [SDOI2014]数表 莫比乌斯反演 BIT 链接 bzoj luogu loj 思路 \[ \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}a*[f[gcd(i,j)]<=a] \] \[ f[]可以O(n)预处理出来 \] \[ \sum\limits_{k=1}^{n}f[k]*\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{m}[gcd(i,j)==k] \] \[ \sum\limits_{k=1}^{n}…
●BZOJ 2694 Lcm
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2694 题解: 莫比乌斯反演 不难看出,造成贡献的(i,j)满足gcd(i,j)无平方因子. 其实也就是$\mu(gcd(i,j))!=0$ 先列出求ANS的式子 $\begin{align*}ANS&=\sum_{a=1}^{A}\sum_{b=1}^{B} lcm(a,b)\mu(gcd(a,b))^2\;(同样的,先枚举gcd的值g)\\&=\sum_{g=1}^{min(A,B…
【bzoj2694】Lcm 莫比乌斯反演+线性筛
题目描述 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m|\mu(gcd(i,j))|lcm(i,j)$,即$gcd(i,j)$不存在平方因子的$lcm(i,j)$之和. 输入 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M 输出 T行 每行一个整数 表示第i组数据的结果 样例输入 4 2 4 3 3 6 5 8 3 样例输出 24 28 233 178 题解 莫比乌斯反演+线性筛 (为了方便,以下公式默认$n\le m$) $\ \ \ \…
bzoj 2440 简单莫比乌斯反演
题目大意: 找第k个非平方数,平方数定义为一个数存在一个因子可以用某个数的平方来表示 这里首先需要考虑到二分才可以接下来做 二分去查找[1 , x]区间内非平方数的个数,后面就是简单的莫比乌斯反演了 容斥原理的思想,首先考虑所有数都属于非平方数 那么就是x 然后对于每一个平方数都要减去,但是这里应该只考虑质数的平方数就可以了 那么就扩展为x - x/(2^2) - x/(3^2) - x/(k^2).... 然后因为中间存在重复减的那么要加回来 -> x - x/(2^2) - x/(3^3) …
bzoj 1101 Zap —— 莫比乌斯反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 直接莫比乌斯反演. 代码如下: #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long long ll; ; int pri[xn],cnt,mu[xn]; bool vis[xn]; int rd() { ,f=; char ch=ge…
bzoj 2694: Lcm
2694: Lcm Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 422 Solved: 220[Submit][Status][Discuss] Description 对于任意的>1的n gcd(a, b)不是n^2的倍数也就是说gcd(a, b)没有一个因子的次数>=2 Input 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M Output T行 每行一个整数 表示第i组数据的结果 Sample Input 4 2…
BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Submit: 2534 Solved: 1129 [Submit][Status][Discuss] Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sample Output 4 HINT hint 对于例子(2,2),(2,4),(3,3),(4,2)…