Gabor滤波器学习】的更多相关文章

本文的目的是用C实现生成Gabor模版,并对图像卷积.并简单提一下,Gabor滤波器在纹理特征提取上的应用. 一.什么是Gabor函数(以下内容含部分翻译自维基百科) 在图像处理中,Gabor函数是一个用于边缘提取的线性滤波器.Gabor滤波器的频率和方向表达同人类视觉系统类似.研究发现,Gabor滤波器十分适合纹理表达和分离.在空间域中,一个二维Gabor滤波器是一个由正弦平面波调制的高斯核函数. 还有,生物学实验发现,Gabor滤波器可以很好地近似单细胞的感受野函数(光强刺激下的传递函数),…
D.Gabor 1946年提出 窗口Fourier变换,为了由信号的Fourier变换提取局部信息,引入了时间局部化的窗函数. 由于窗口Fourier变换只依赖于部分时间的信号,所以,现在窗口Fourier变换又称为短时Fourier变换,这个变换又称为Gabor变换. 1) Gabor优点 Gabor小波与人类视觉系统中简单细胞的视觉刺激响应非常相似.它在提取目标的局部空间和频率域信息方面具有良好的特性.虽然Gabor小波本身并不能构成正交基,但在特定参数下可构成紧框架.Gabor小波对于图像…
参考博客:https://blog.csdn.net/xue_wenyuan/article/details/51533953 https://blog.csdn.net/jinshengtao/article/details/17797641 傅里叶变换是一种信号处理中的有力工具,可以帮助我们将图像从空域转换到频域,并提取到空域上不易提取的特征.但是经过傅里叶变换后, 图像在不同位置的频度特征往往混合在一起,但是Gabor滤波器却可以抽取空间局部频度特征,是一种有效的纹理检测工具. 在图像处理…
搬以前写的博客[2014-02-28 20:03] 关于Gabor滤波器是如何提取出特征点,这个过程真是煎熬.看各种文章,结合百度.文章内部的分析才有一点点明白. Gabor滤波器究竟是什么?   很多表述说的是加窗傅里叶变换.怎么理解呢? 公式有下面几种表述:              (1)                      (2) (3) 文章中的和第三种最相似,那么我理解是:傅里叶变换的基是e^(j2πfx),那么所谓的加窗指的是加上一个高斯函数,如公式(1),和Gabor函数卷…
原 https://blog.csdn.net/alwaystry/article/details/52756051 图像算法五:[图像小波变换]多分辨率重构.Gabor滤波器.Haar小波 2018年11月30日 01:49:25 芥末酱- 阅读数:720    版权声明:不允许转载本博客文章,否则违版必究. https://blog.csdn.net/weixin_42346564/article/details/84642513 matlab设计: 与单纯运用某种自适应算法相比,基于小波分…
https://blog.csdn.net/u013709270/article/details/49642397 https://github.com/xuewenyuan/Gabor_Visualization https://blog.csdn.net/u013709270/article/details/49642397 第三种 使用的第三种gabor模型: 代码opencv实现 #include <opencv2/core/core.hpp>#include <opencv2/…
转自:http://blog.csdn.net/watkinsong/article/details/7882443 方式一: function result = gaborKernel2d( lambda, theta, phi, gamma, bandwidth) % GABORKERNEL2D % Version: 2012/8/17 by watkins.song % Version: 1.0 %   Fills a (2N+1)*(2N+1) matrix with the value…
1.spatialgabor.m描述gabor函数 % SPATIALGABOR - applies single oriented gabor filter to an image%% Usage:%  [Eim, Oim, Aim] =  spatialgabor(im, wavelength, angle, kx, ky, showfilter)%% Arguments:%         im         - Image to be processed.%         wavel…
0. gabor 基本原理 1. matlab 内置对 gabor 的支持 gabor:Create Gabor filter or Gabor filter bank g = gabor(wavelength,orientation) g = gabor([5, 10], [0, 90]); figure; for p = 1:length(g), subplot(2, 2, p); imshow(g(p).SpatialKernel, []); lambda = g(p).Wavelengt…
原文:http://blog.csdn.net/yao_zhuang/article/details/2532279 下载cvgabor.cpp和cvgabor.h到你的C/C++工程目录下 注:在我的资源中有改进过的cvgabor类 相关链接为:http://download.csdn.net/source/490114 特别注意:使用该类需要opencv库的支持,如何配置环境参见:http://www.opencv.org.cn/index.php/Template:Install 它有如下…
本文根据博客http://blog.csdn.net/watkinsong/article/details/7870996 ,博客http://www.cnblogs.com/yingying0907/archive/2012/11/22/2781945.html整理. 1.傅里叶变换 1) 简介 数字图像处理的方法主要分成两大部分:空域分析法和频域分析法.空域分析法就是对图像矩阵进行处理:频域分析法是通过图像变换将图像从空域变换到频域,从另外一个角度来分析图像的特征并进行处理.频域分析法在图像…
本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep learning简介 [2]Deep Learning训练过程 [3]Deep Learning模型之:CNN卷积神经网络推导和实现 [4]Deep Learning模型之:CNN的反向求导及练习 [5]Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN [6]Deep Learning模型之:CNN卷积神经网络(二)文字识别系统LeNet-5 [7]Deep Learning…
申明:本文非笔者原创,原文转载自:http://www.sigvc.org/bbs/thread-2187-1-3.html 4.2.初级(浅层)特征表示 既然像素级的特征表示方法没有作用,那怎样的表示才有用呢? 1995 年前后,Bruno Olshausen和 David Field 两位学者任职 Cornell University,他们试图同时用生理学和计算机的手段,双管齐下,研究视觉问题. 他们收集了很多黑白风景照片,从这些照片中,提取出400个小碎片,每个照片碎片的尺寸均为 16x1…
转载来源:http://blog.csdn.net/fengbingchun/article/details/50087005 这篇文章主要是为了对深度学习(DeepLearning)有个初步了解,算是一个科普文吧,文章中去除了复杂的公式和图表,主要内容包括深度学习概念.国内外研究现状.深度学习模型结构.深度学习训练算法.深度学习的优点.深度学习已有的应用.深度学习存在的问题及未来研究方向.深度学习开源软件. 一.            深度学习概念 深度学习(Deep Learning, DL…
dennis gabor 题目:从傅里叶(Fourier)变换到伽柏(Gabor)变换再到小波(Wavelet)变换 本文是边学习边总结和摘抄各参考文献内容而成的,是一篇综述性入门文档,重点在于梳理傅里叶变换到伽柏变换再到小波变换的前因后果,对于一些概念但求多而全,所以可能会有些理解的不准确,后续计划分别再展开学习研究.通过本文可以了解到: 1)傅里叶变换的缺点:2)Gabor变换的概念及优缺点:3)什么是小波:4)小波变换的概念及优点. 一.前言         首先,我必须说一下,在此之前,…
http://blog.csdn.net/zouxy09/article/details/8775360 一.概述 Artificial Intelligence,也就是人工智能,就像长生不老和星际漫游一样,是人类最美好的梦想之一.虽然计算机技术已经取得了长足的进步,但是到目前为止,还没有一台电脑能产生“自我”的意识.是的,在人类和大量现成数据的帮助下,电脑可以表现的十分强大,但是离开了这两者,它甚至都不能分辨一个喵星人和一个汪星人. 图灵(图灵,大家都知道吧.计算机和人工智能的鼻祖,分别对应于…
Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04-08 声明: 1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主删除.…
转载自:http://blog.csdn.net/zouxy09/article/details/8775360 感谢原作者:zouxy09@qq.com 八.Deep learning训练过程 8.1.传统神经网络的训练方法为什么不能用在深度神经网络 BP算法作为传统训练多层网络的典型算法,实际上对仅含几层网络,该训练方法就已经很不理想.深度结构(涉及多个非线性处理单元层)非凸目标代价函数中普遍存在的局部最小是训练困难的主要来源. BP算法存在的问题: (1)梯度越来越稀疏:从顶层越往下,误差…
9.5.Convolutional Neural Networks卷积神经网络 卷积神经网络是人工神经网络的一种,已成为当前语音分析和图像识别领域的研究热点.它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂 度,减少了权值的数量.该优点在网络的输入是多维图像时表现的更为明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过 程.卷积网络是为识别二维形状而特殊设计的一个多层感知器,这种网络结构对平移.比例缩放.倾斜或者共他形式的变形具有高度不变性. C…
目录: 一.概述 二.背景 三.人脑视觉机理 四.关于特征        4.1.特征表示的粒度        4.2.初级(浅层)特征表示        4.3.结构性特征表示        4.4.需要有多少个特征? 五.Deep Learning的基本思想 六.浅层学习(Shallow Learning)和深度学习(Deep Learning) 七.Deep learning与Neural Network 八.Deep learning训练过程        8.1.传统神经网络的训练方法…
      引言         深度学习,即Deep Learning,是一种学习算法(Learning algorithm),亦是人工智能领域的一个重要分支.从快速发展到实际应用,短短几年时间里,深度学习颠覆了语音识别.图像分类.文本理解等众多领域的算法设计思路,渐渐形成了一种从训练数据出发,经过一个端到端(end-to-end)的模型,然后直接输出得到最终结果的一种新模式.那么,深度学习有多深?学了究竟有几分?本文将带你领略深度学习高端范儿背后的方法与过程. 一.概述 Artificial…
GoogLeNet是谷歌(Google)研究出来的深度网络结构,为什么不叫“GoogleNet”,而叫“GoogLeNet”,据说是为了向“LeNet”致敬,因此取名为“GoogLeNet”,所以我们这里题目就叫GoogLeNet.后面我们为了方便就叫inception Net. Google Inception Net 首次出现在 ILSVRC 2014的比赛中(和VGGNet 同年),就以较大优势取得了第一名.那一届比赛中的 Inception Net 通常被称为inception V1,它…
Topic:表情识别Env: win10 + Pycharm2018 + Python3.6.8Date:   2019/6/23~25 by hw_Chen2018                                  CSDN: https://blog.csdn.net/qq_34198088/article/details/97895876[感谢参考文献作者的辛苦付出:编写不易,转载请注明出处,感谢!]一.简要介绍 本文方法参考文献[1]的表情识别方法,实验数据集为JAFFE…
A³CLNN: Spatial, Spectral and Multiscale Attention ConvLSTM Neural Network for Multisource Remote Sensing Data Classification 有效利用信息多个数据源的问题已成为遥感领域一个相关但具有挑战性的研究课题.在本文中,我们提出了一种新的方法来利用两个数据源的互补性:高光谱图像(HSI)和光检测与测距(LiDAR)数据.具体来说,我们开发了一种新的双通道空间,频谱和多尺度注意力卷积…
 申明:本文非笔者原创,原文转载自:http://www.sigvc.org/bbs/thread-2187-1-3.html 4.2.初级(浅层)特征表示 既然像素级的特征表示方法没有作用,那怎样的表示才有用呢? 1995 年前后,Bruno Olshausen和 David Field 两位学者任职 Cornell University,他们试图同时用生理学和计算机的手段,双管齐下,研究视觉问题. 他们收集了很多黑白风景照片,从这些照片中,提取出400个小碎片,每个照片碎片的尺寸均为 1…
摘要 卷积网络在特征分层领域是非常强大的视觉模型.我们证明了经过端到端.像素到像素训练的卷积网络超过语义分割中最先进的技术.我们的核心观点是建立"全卷积"网络,输入任意尺寸,经过有效的推理和学习产生相应尺寸的输出.我们定义并指定全卷积网络的空间,解释它们在空间范围内dense prediction任务(预测每个像素所属的类别)和获取与先验模型联系的应用.我们改编当前的分类网络(AlexNet [22] ,the VGG net [34] , and GoogLeNet [35] )到完…
时域下的一维Gabor滤波器: 可以将Gabor滤波器看作是两个输出两个相位的滤波器,分别在实数域和虚数域上. 实数域上滤波器为: 虚数域上滤波器为: 傅里叶变换为频域: 上述两个滤波器对频率敏感,为了获得一个对相位不敏感,而且对正弦输入无正面响应的响应,因此,通过计算两个滤波器输出的和的平方根来得到这样一个滤波器. 在频率域上,针对一个特定频率的响应能量只是傅里叶变换的能量.        上述式子为gaussian 函数,中心为fo,宽度比例为a. 频率带宽和峰值响应 峰值响应在频率为fo处…
首先要说明,DSST//BMVC2014类的CF是从MOSSE//CVPR2010模型得到的,是从信号的角度考虑问题,该类CF直接认为信号和滤波器之间存在相关的关系 而KCF//TPAMI2015类CF并不默认这一关系,其依然是从传统的分类器(岭回归)角度去求解一个分类器的权重,但是由于其强制训练样本为循环矩阵形式,从而内嵌了权重w有一个类似于相关滤波器的作用. 这两种是不同的,所以最后的检测结果实际上也是有区别的. 而MOSSE(DSST)类的滤波器h和KCF类的权重w实际上有比较大的区别.因…
Schmid也是一种类Gabor图像滤波器,在这篇文章[1]中有详细推导和介绍. 一种更简洁的表达公式是: 当中,r为核半径,Z为归一化參数,τ和σ是比較重要的參数,在ReID提取TextFeature中,常常使用例如以下一系列參数: (2,1), (4,1), (4,2), (6,1), (6,2), (6,3), (8,1), (8,2), (8,3), (10,1), (10,2), (10,3), (10,4) 此外,还结合前面的Gabor滤波器,γ,θ,λ,σ的參数分别使用:(0.3,…
一.文章来由 好久没写原创博客了,一直处于学习新知识的阶段.来新加坡也有一个星期,搞定签证.入学等杂事之后,今天上午与导师确定了接下来的研究任务,我平时基本也是把博客当作联机版的云笔记~~如果有写的不对的地方,欢迎批评指正. 二.<一天搞懂深度学习> 300多页的PPT,台大教授写的好文章. 对应的视频地址 1.Lecture I: Introduction of Deep Learning (1)machine learning≈找函数 training和testing过程 (2)单个神经网…