转发年浩大神的spfa算法】的更多相关文章

http://www.cnblogs.com/superxuezhazha/p/5426624.html #include<iostream> #include<stdio.h> #include<queue> using namespace std; ; ; int map[maxx][maxx],dist[maxx]; bool visit[maxx]; int n;//路径数 void sofa(int a) { int i,now; memset(visit,f…
Bellman-ford 算法适用于含有负权边的最短路求解,复杂度是O( VE ),其原理是依次对每条边进行松弛操作,重复这个操作E-1次后则一定得到最短路,如果还能继续松弛,则有负环.这是因为最长的没有环路的路,也只不过是V个点E-1条边构成的,所以松弛E-1次一定能得到最短路.因此这个算法相比 Dijkstra 首先其是对边进行增广,其次它能检测出负环的存在(若负环存在,那么最短路是取不到的,因为可以一直绕着这个负环将最小路径值不断缩小),这个弥补了 Dijkstra 的不足,但是其算法跑的…
[C++中级进阶]001_C++0x里的完美转发到底是神马? 转载至:http://www.cnblogs.com/alephsoul-alephsoul/archive/2013/01/10/2853900.html   问题描述 C++无疑是十分强大的,但是你可知道,在C++0x标准出现之前,在C++界里有一个十分棘手而未能解决的问题——参数转发.问题的描述如下: 对于一个给定的函数E(a1, a2, ..., an),它有参数a1, a2, ..., an,你不可能写出一个函数F(a1,…
Dijkstra算法: 解决带非负权重图的单元最短路径问题.时间复杂度为O(V*V+E) 算法精髓:维持一组节点集合S,从源节点到该集合中的点的最短路径已被找到,算法重复从剩余的节点集V-S中选择最短路径估计最小的节点u,对u的所有连边进行松弛操作.即对j=1~n,dis[j] = min(dis[j],dis[k]+map[k][j]). 常规代码如下: void Dijkstra() { int i,j,k,mini; memset(vis,,sizeof(vis)); ;i<=n;i++)…
// 此博文为迁移而来,写于2015年4月9日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102vx93.html 1.前言        最短路算法有很多种,类似于Floyd和Dijkstra都是很早之前就学了的.其实每种最短路算法有各自的优势.Floyd适合于跑完全图,但是效率太慢(O(n3)).Dijkstra适合于跑没有负权的图,效率为O(n2).而今天介绍的SPFA算法,是有一位中国人——段凡丁所提出来的(其实…
SPFA算法 一.算法简介 SPFA(Shortest Path Faster Algorithm)算法是求单源最短路径的一种算法,它是Bellman-ford的队列优化,它是一种十分高效的最短路算法. 很多时候,给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了.SPFA的复杂度大约是O(kE),k是每个点的平均进队次数(一般的,k是一个常数,在稀疏图中小于2). 但是,SPFA算法稳定性较差,在稠密图中S…
一.理论准备 为了学习网络流,先水一道spfa. SPFA算法是1994年西南交通大学段凡丁提出,只要最短路径存在,SPFA算法必定能求出最小值,SPFA对Bellman-Ford算法优化的关键之处在于意识到:只有那些在前一遍松弛中改变了距离估计值的点,才可能引起他们的邻接点的距离估计值的改变.为什么队列为空就不改变了呢?就是因为要到下一点必须经过它的前一个邻接点..SPFA可以处理负权边.很多时候,给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算…
最近自己陷入了很长时间的学习和思考之中,突然发现好久没有更新博文了,于是便想更新一篇. 这篇文章是我之前程序设计语言课作业中一段代码,用scheme语言实现单源最段路算法.当时的我,花了一整天时间,学习了scheme并实现了SPFA算法,那天实现之后感觉很有成就感-在这里贴出来,以飨读者. 突然发现博客园不支持scheme语言,于是只能放弃高亮了.不得不说,scheme代码有没有高亮差别好大…… ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; 题目…
SPFA算法是改进后的Bellman-Ford算法,只是速度更快,而且作为一个算法,它更容易理解和编写,甚至比Dijkstra和B-F更易读(当然,Floyd是另一回事了,再也没有比Floyd还好写的最短路算法了,动规中这么简洁的也少见). 详细说说SPFA SPFA,即Shortest Path Faster Algorithm. SPFA算法的核心很简单: #设Dist[j]为当前原点(S点)到j点的最短路 #(我会尽量避免"松弛"这个半懂不懂的词) #在初始状态下Dist[S]=…
适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了. 我们约定有向加权图G不存在负权回路,即最短路径一定存在.当然,我们可以在执行该算法前做一次拓扑排序,以判断是否存在负权回路,但这不是我们讨论的重点. 算法思想:我们用数组d记录每个结点的最短路径估计值,用邻接表来存储图G.我们采取的方法是动态逼近法:设立一个先进先出的队列用来保存待优化的结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计…