AdaBoost算法原理 AdaBoost算法针对不同的训练集训练同一个基本分类器(弱分类器),然后把这些在不同训练集上得到的分类器集合起来,构成一个更强的最终的分类器(强分类器).理论证明,只要每个弱分类器分类能力比随机猜测要好,当其个数趋向于无穷个数时,强分类器的错误率将趋向于零.AdaBoost算法中不同的训练集是通过调整每个样本对应的权重实现的.最开始的时候,每个样本对应的权重是相同的,在此样本分布下训练出一个基本分类器h1(x).对于h1(x)错分的样本,则增加其对应样本的权重:而对于…