机器学习之Adaboost算法原理】的更多相关文章

转自:http://www.cnblogs.com/pinard/p/6133937.html 在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类,第一个是个体学习器之间存在强依赖关系,另一类是个体学习器之间不存在强依赖关系.前者的代表算法就是是boosting系列算法.在boosting系列算法中, Adaboost是最著名的算法之一.Adaboost既可以用作分类,也可以用作回归.本文就对Adaboost算法做一个总结. 1. 回顾boosting算法的基…
在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类: 第一个是个体学习器之间存在强依赖关系: 另一类是个体学习器之间不存在强依赖关系. 前者的代表算法就是提升(boosting)系列算法.在boosting系列算法中, Adaboost是最著名的算法之一.Adaboost既可以用作分类,也可以用作回归.本文就对Adaboost算法做一个总结. 一 回顾boosting算法的基本原理 AdaBoost是典型的Boosting算法,属于Boosting家族的一员.…
AdaBoost算法原理 AdaBoost算法针对不同的训练集训练同一个基本分类器(弱分类器),然后把这些在不同训练集上得到的分类器集合起来,构成一个更强的最终的分类器(强分类器).理论证明,只要每个弱分类器分类能力比随机猜测要好,当其个数趋向于无穷个数时,强分类器的错误率将趋向于零.AdaBoost算法中不同的训练集是通过调整每个样本对应的权重实现的.最开始的时候,每个样本对应的权重是相同的,在此样本分布下训练出一个基本分类器h1(x).对于h1(x)错分的样本,则增加其对应样本的权重:而对于…
在boosting系列算法中,Adaboost是最著名的算法之一.Adaboost既可以用作分类,也可以用作回归. 1. boosting算法基本原理 集成学习原理中,boosting系列算法的思想:…
在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类,第一个是个体学习器之间存在强依赖关系,另一类是个体学习器之间不存在强依赖关系.前者的代表算法就是是boosting系列算法.在boosting系列算法中, Adaboost是最著名的算法之一.Adaboost既可以用作分类,也可以用作回归.本文就对Adaboost算法做一个总结. 1. 回顾boosting算法的基本原理 在集成学习原理小结中,我们已经讲到了boosting算法系列的基本思想,如下图: 从图中…
备注:OpenCV版本 2.4.10 在数据的挖掘和分析中,最基本和首要的任务是对数据进行分类,解决这个问题的常用方法是机器学习技术.通过使用已知实例集合中所有样本的属性值作为机器学习算法的训练集,导出一个分类机制后,再使用这个分类机制判别一个新实例的属性,并且可以通过不间断的学习,持续丰富和优化该分类机制,使机器具有像大脑一样的思考能力. 常用的分类方法有决策树分类.贝叶斯分类等.然而这些方法存在的问题是当数据量巨大时,分类的准确率不高.对于这样的困难问题,Boosting及其衍生算法提供了一…
这里整理一下实验课实现的基于单层决策树的弱分类器的AdaBoost算法. 由于是初学,实验课在找资料的时候看到别人的代码中有太多英文的缩写,不容易看懂,而且还要同时看代码实现的细节.算法的原理什么的,就体验很不好. 于是我这里代码中英文没有用缩写,也尽量把思路写清楚. 基本概念 集成学习:通过组合多个基分类器(base classifier)来完成学习任务,基分类器一般采用弱学习器. 弱学习器:只学习正确率仅仅略优于随机猜测的学习器.通过集成方法,就能组合成一个强学习器. Bagging和Boo…
AdaBoost(Adaptive Boosting):自适应提升方法. 1.AdaBoost算法介绍 AdaBoost是Boosting方法中最优代表性的提升算法.该方法通过在每轮降低分对样例的权重,增加分错样例的权重,使得分类器在迭代过程中逐步改进,最终将所有分类器线性组合得到最终分类器,Boost算法框架如下图所示: 图1.1 Boost分类框架(来自PRML) 2.AdaBoost算法过程: 1)初始化每个训练样例的权值,共N个训练样例. 2)共进行M轮学习,第m轮学习过程如下: A)使…
Apriopri算法 Apriori算法在数据挖掘中应用较为广泛,常用来挖掘属性与结果之间的相关程度.对于这种寻找数据内部关联关系的做法,我们称之为:关联分析或者关联规则学习.而Apriori算法就是其中非常著名的算法之一.关联分析,主要是通过算法在大规模数据集中寻找频繁项集和关联规则. 频繁项集:经常出现在一起的物品或者属性的集合 关联规则:物品或者属性之间存在的内在关系(统计学上的关系) 所以,我们常见的Apriori算法中的主要包含两大模块内容,一块是寻找频繁项集的函数模块,一块是探索关联…
注:本篇博文是根据其他优秀博文编写的,我只是对其改变了知识的排序,另外代码是<机器学习实战>中的.转载请标明出处及参考资料. 1 Adaboost 算法实现过程 1.1 什么是 Adaboost 算法 Adaboost是英文"Adaptive Boosting"(自适应增强)的缩写,它的自适应在于:前一个基本分类器被错误分类的样本的权值会增大,而正确分类的样本的权值会减小,并再次用来训练下一个基本分类器.同时,在每一轮迭代中,加入一个新的弱分类器,直到达到某个预定的足够小的…