什么是LakeHouse?】的更多相关文章

1. 引入 在Databricks的过去几年中,我们看到了一种新的数据管理范式,该范式出现在许多客户和案例中:LakeHouse.在这篇文章中,我们将描述这种新范式及其相对于先前方案的优势. 数据仓库技术自1980诞生以来一直在发展,其在决策支持和商业智能应用方面拥有悠久的历史,而MPP体系结构使得系统能够处理更大数据量.但是,虽然数据仓库非常适合结构化数据,但许多现代企业必须处理非结构化数据.半结构化数据以及具有高多样性,高速度和高容量的数据.数据仓库不适用于许多此类场景,并且也不是最具成本效…
在过去的几年里,Lakehouse作为一种新的数据管理范式,已独立出现在Databricks的许多用户和应用案例中.在这篇文章中,我们将阐述这种新范式以及它相对于之前方案的优势. 数据仓库在决策支持和商业智能应用方面有着悠久的历史.自20世纪80年代末问世以来,数据仓库技术一直在持续不断的发展,并且MPP体系架构使系统能够处理更大的数据量.尽管数据仓库非常适合处理结构化数据,但是对于很多现代企业,对非结构化数据.半结构化数据以及具有高多样性.高速度.高容量特性的数据处理也往往是必须的,数据仓库并…
1. 摘要 数仓架构在未来一段时间内会逐渐消亡,会被一种新的Lakehouse架构取代,该架构主要有如下特性 基于开放的数据格式,如Parquet: 机器学习和数据科学将被作为头等公民支持: 提供卓越的性能: Lakehouse可以解决数据仓库面临的几个主要挑战,如数据陈旧,可靠性,总成本,数据格式不开放和有限场景支持. 2. 数据分析平台发展 数据仓库将业务数据库的数据收集到集中式仓库来帮助企业领导者获得分析见解,然后将其用于决策支持和商业智能(BI),仓库使用写模式(schema-on-wr…
1. 动机 Lakehouse最早由Databricks公司提出,其可作为低成本.直接访问云存储并提供传统DBMS管系统性能和ACID事务.版本.审计.索引.缓存.查询优化的数据管理系统,Lakehouse结合数据湖和数据仓库的优点:包括数据湖的低成本存储和开放数据格式访问,数据仓库强大的管理和优化能力.Delta Lake,Apache Hudi和Apache Iceberg是三种构建Lakehouse的技术. 与此同时,Pulsar提供了一系列特性:包括分层存储.流式卸载.列式卸载等,让其成…
1. 概述 如今数据湖上的事务被认为是 Lakehouse 的一个关键特征. 但到目前为止,实际完成了什么? 目前有哪些方法? 它们在现实世界中的表现如何? 这些问题是本博客的重点. 有幸从事过各种数据库项目--RDBMS (Oracle).NoSQL 键值存储 (Voldemort).流数据库 (ksqlDB).闭源实时数据存储,当然还有 Apache Hudi, 我可以肯定地说,工作负载的不同深刻地影响了不同数据库中采用的并发控制机制.本博客还将介绍我们如何重新思考 Apache Hudi…
Halodoc 数据工程已经从传统的数据平台 1.0 发展到使用 LakeHouse 架构的现代数据平台 2.0 的改造.在我们之前的博客中,我们提到了我们如何在 Halodoc 实施 Lakehouse 架构来服务于大规模的分析工作负载. 我们提到了平台 2.0 构建过程中的设计注意事项.最佳实践和学习. 本博客中我们将详细介绍 Apache Hudi 以及它如何帮助我们构建事务数据湖.我们还将重点介绍在构建Lakehouse时面临的一些挑战,以及我们如何使用 Apache Hudi 克服这些…
本博客的重点展示如何利用增量数据处理和执行字段级更新来构建一个开放式 Lakehouse. 我们很高兴地宣布,用户现在可以使用 Apache Hudi + dbt 来构建开放Lakehouse. 在深入了解细节之前,让我们先澄清一下本博客中使用的一些术语. 什么是 Apache Hudi? Apache Hudi 为Lakehouse带来了 ACID 事务.记录级更新/删除和变更流. Apache Hudi 是一个开源数据管理框架,用于简化增量数据处理和数据管道开发.该框架更有效地管理数据生命周…
认识Lakehouse 数据仓库被认为是对结构化数据执行分析的标准,但它不能处理非结构化数据. 包括诸如文本.图像.音频.视频和其他格式的信息. 此外机器学习和人工智能在业务的各个方面变得越来越普遍,它们需要访问数据仓库之外的大量信息. 开放的Lakehouse 云计算发展引发了计算与存储分离,这利用了成本优势并能够灵活地存储来自多个来源的数据. 所有这一切都催生了开放Lakehouse的新数据平台架构.现在通过使用 Presto 和 Apache Hudi 等开源和开放格式技术解决了传统云数据…
1. 摘要 在 Halodoc,我们始终致力于为最终用户简化医疗保健服务,随着公司的发展,我们不断构建和提供新功能. 我们两年前建立的可能无法支持我们今天管理的数据量,以解决我们决定改进数据平台架构的问题. 在我们之前的博客中,我们谈到了现有平台的挑战以及为什么我们需要采用 Lake House 架构来支持业务和利益相关者以轻松访问数据. 在这篇博客中,我们将讨论我们的新架构.涉及的组件和不同的策略,以拥有一个可扩展的数据平台. 2. 新架构 让我们首先看一下经过改进的新数据平台 2.0 的高级…
1. 介绍 最近几周,人们对比较 Hudi.Delta 和 Iceberg 的表现越来越感兴趣. 我们认为社区应该得到更透明和可重复的分析. 我们想就如何执行和呈现这些基准.它们带来什么价值以及我们应该如何解释它们添加我们的观点. 2. 现有方法存在哪些问题? 最近 Databeans 发布了一篇博客,其中使用 TPC-DS 基准对 Hudi/Delta/Iceberg 的性能进行了正面比较.虽然很高兴看到社区挺身而出并采取行动提高对行业当前技术水平的认识,但我们发现了一些与实验进行方式和结果报…
摘要:华为云发布新一代智能数据湖华为云FusionInsight时再次提到了湖仓一体理念,那我们就来看看湖仓一体的来世今生. 伴随5G.大数据.AI.IoT的飞速发展,数据呈现大规模.多样性的极速增长,为了应对多变的业务诉求,政企客户对数据处理分析的实时性和融合性提出了更高的要求,"湖仓一体"的概念应运而生,它打破数据湖与数仓间的壁垒,使得割裂数据融合统一,减少数据分析中的搬迁,实现统一的数据管理. 早在2020年5月份的华为全球分析师大会上,华为云CTO张宇昕提出了"湖仓一…
摘要:华为云FusionInsight MRS新一代的数据湖,让大数据越用越快.越用越易.越用越稳.越用越省!让数据价值近在眼前! 10月30日,以"携手共赢·数创未来"为主题的第二届数据分析技术与应用高峰论坛在深圳举行.会上,华为云大数据高级营销经理王宁进行了主题演讲"华为云FusionInsight MRS跨越技术裂谷,助力客户实现一企一湖,一城一湖"! 大数据技术创新焦点已转向LakeHouse,企业创新焦点已转向湖仓一体 "随着大数据技术的愈发成熟…
Hive实现自增序列 在利用数据仓库进行数据处理时,通常有这样一个业务场景,为一个Hive表新增一列自增字段(比如事实表和维度表之间的"代理主键").虽然Hive不像RDBMS如mysql一样本身提供自增主键的功能,但它本身可以通过函数来实现自增序列功能:利用row_number()窗口函数或者使用UDFRowSequence. 示例:table_src是我们经过业务需求处理的到的中间表数据,现在我们需要为table_src新增一列自增序列字段auto_increment_id,并将最…
数据湖仓 自从Databricks提出Lakehouse后,同时Snowflake的上市,湖仓一体成为数据领域最火热的话题. https://databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html 核心的理念是Delta Lake使Hadoop有了ACID事务能力,使用Spark内存做实时,批,AI计算层. 这样就可以用分布式文件存储颠覆关系数据库存储. 数据仓库 数仓一直有3种类型,概念上和物理上: 一体机 Oracle Exa…
1. 概述 成千上万的客户在Amazon EMR上使用Apache Spark,Apache Hive,Apache HBase,Apache Flink,Apache Hudi和Presto运行大规模数据分析应用程序.Amazon EMR自动管理这些框架的配置和扩缩容,并通过优化的运行时提供更高性能,并支持各种Amazon Elastic Compute Cloud(Amazon EC2)实例类型和Amazon Elastic Kubernetes Service(Amazon EKS)集群.…
Apache Hudi是一个开源数据湖管理平台,用于简化增量数据处理和数据管道开发,该平台可以有效地管理业务需求,例如数据生命周期,并提高数据质量.Hudi的一些常见用例是记录级的插入.更新和删除.简化文件管理和近乎实时的数据访问以及简化的CDC数据管道开发. 本期SOFTWARE DAILY我们有幸采访到了Apache Hudi项目VP Vinoth Chandar.Vinoth是Uber Hudi项目的创建者,他继续在Apache Software Foundation领导Hudi的发展.在…
作者:李少锋 文章目录: 一.CDC背景介绍 二.CDC数据入湖 三.Hudi核心设计 四.Hudi未来规划 1. CDC背景介绍 首先我们介绍什么是CDC?CDC的全称是Change data Capture,即变更数据捕获,它是数据库领域非常常见的技术,主要用于捕获数据库的一些变更,然后可以把变更数据发送到下游.它的应用比较广,可以做一些数据同步.数据分发和数据采集,还可以做ETL,今天主要分享的也是把DB数据通过CDC的方式ETL到数据湖. 对于CDC,业界主要有两种类型: 基于查询,客户…
支撑了80%的离线作业,日作业量在1W+ 大多数场景比 Hive 性能提升了3-6倍 多租户.并发的场景更加高效稳定 T3出行是一家基于车联网驱动的智慧出行平台,拥有海量且丰富的数据源.因为车联网数据的多样性,T3出行构建了以 Apache Hudi 为基础的企业级数据湖,提供强有力的业务支撑.而对于负责数据价值挖掘的终端用户而言,平台的技术门槛是另一种挑战.如果能将平台的能力统合,并不断地优化和迭代,让用户能够通过 JDBC 和 SQL 这种最普遍最通用的技术来使用,数据生产力将可以得到进一步…
Apache Kyuubi(Incubating)(下文简称Kyuubi)是⼀个构建在Spark SQL之上的企业级JDBC网关,兼容HiveServer2通信协议,提供高可用.多租户能力.Kyuubi 具有可扩展的架构设计,社区正在努力使其能够支持更多通信协议(如 RESTful. MySQL)和计算引擎(如Flink). Kyuubi的愿景是让大数据平民化.一个的典型使用场景是替换HiveServer2,帮助企业把HiveQL迁移到Spark SQL,轻松获得10~100倍性能提升(具体提升…
在字节跳动内部,Presto 主要支撑了 Ad-hoc 查询.BI 可视化分析.近实时查询分析等场景,日查询量接近 100 万条.本文是字节跳动数据平台 Presto 团队-软件工程师常鹏飞在 PrestoCon 2021 大会上的分享整理. 在字节跳动内部,Presto 主要支撑了 Ad-hoc 查询.BI 可视化分析.近实时查询分析等场景,日查询量接近 100 万条. • 功能性方面:完全兼容 SparkSQL 语法,可以实现用户从 SparkSQL 到 Presto 的无感迁移: • 性能…
Thoughtworks Technology Radar #26 Techniques Adopt Four key metrics Google Cloud's DevOps Research and Assessment (DORA) Four Keys Deployment Frequency Lead Time for Changes Time to Restore Services Change Failure Rate The 2019 Accelerate State of De…
1. 摘要 数据是每项技术业务的支柱,作为一个健康医疗技术平台,Halodoc 更是如此,用户可以通过以下方式与 Halodoc 交互: 送药 与医生交谈 实验室测试 医院预约和药物 所有这些交互都会产生高度敏感.多样化且通常是非结构化的数据. 因此随着公司的成长,必须拥有一个强大的数据平台,平台需要满足如下需求: 确保数据的隐私和安全 在处理结构化和半/非结构化数据时可靠.可扩展.快速且高可用 促进为业务/运营团队生成报告和实时仪表板 为数据科学团队提供一个平台来运行实验.模型和存储结果 2.…
大家好,我是来自 Juicedata 的高昌健,今天想跟大家分享的主题是<JuiceFS 在数据湖存储架构上的探索>,以下是今天分享的提纲: 首先我会简单的介绍一下大数据存储架构变迁以及它们的优缺点,然后介绍什么是 JuiceFS,其次的话会再重点介绍一下关于 JuiceFS 和数据湖的一些结合和关联,最后会介绍一下 JuiceFS 和数据湖生态的集成. 大数据存储架构变迁 纵观整个大数据存储架构的变迁,可以看到有非常明显的三个阶段:第一个阶段就是从最早的 Hadoop.Hive 等项目诞生之…
1. 摘要 数据平台已经彻底改变了公司存储.分析和使用数据的方式--但为了更有效地使用它们,它们需要可靠.高性能和透明.数据在制定业务决策和评估产品或 Halodoc 功能的性能方面发挥着重要作用.作为印度尼西亚最大的在线医疗保健公司的数据工程师,我们面临的主要挑战之一是在整个组织内实现数据民主化. Halodoc 的数据工程 (DE) 团队自成立以来一直使用现有的工具和服务来维护和处理大量且多样的数据,但随着业务的增长,我们的数据量也呈指数级增长,需要更多的处理资源. 由于现代数据平台从不同的…
与许多其他事务数据系统一样,索引一直是 Apache Hudi 不可或缺的一部分,并且与普通表格式抽象不同. 在这篇博客中,我们讨论了我们如何重新构想索引并在 Apache Hudi 0.11.0 版本中构建新的多模式索引,这是用于 Lakehouse 架构的首创高性能索引子系统,以优化查询和写入事务,尤其是对于大宽表而言. 1. 为什么在 Hudi 中使用多模态索引 索引被广泛应用于数据库系统中,例如关系数据库和数据仓库,以降低 I/O 成本并提高查询效率.类似于书末的索引页如何帮助您快速定位…
在我们之前的文章中,我们讨论了多模式索引的设计,这是一种用于Lakehouse架构的无服务器和高性能索引子系统,以提高查询和写入性能.在这篇博客中,我们讨论了构建如此强大的索引所需的机制,异步索引机制的设计,类似于 PostgreSQL 和 MySQL 等流行的数据库系统,它支持索引构建而不会阻塞写入. 背景 Apache Hudi 将事务和更新/删除/更改流添加到弹性云存储和开放文件格式之上的表中. Hudi 内部的一个关键组件是事务数据库内核,它协调对 Hudi 表的读取和写入.索引是该内核…
随着互联网技术和信息技术的发展,信息的数据化产生了许多无法用常规工具量化.处理和捕捉的数字信息.面对多元的数据类型,海量的信息价值,如何有效地对大数据进行挖掘分析,对大数据工作流进行调度,是保障企业大数据任务高效运行的基础. 有了数据平台和数据仓库,选择什么系统来调度和管理数仓任务就显得尤为重要.Apache DolphinScheduler作为新一代的大数据任务调度系统,致力于让调度变得更加容易.身为一款专门针对于大数据平台的工作调度系统,具有本土化风格和多样化的部署方式.同时,Apache…
盘点行业内近期发生的大事,Delta 2.0 的开源是最让人津津乐道的,尤其在 Databricks 官宣 delta2.0 时抛出了下面这张性能对比,颇有些引战的味道. 虽然 Databricks 的工程师反复强调性能测试来自第三方 Databeans,并且他们没有主动要求 Databeans 做这项测试,但如果全程看完 delta2.0 发布会,会发现在 delta2.0 即将开放的 key feature 中,特别列出了 Iceberg 到 Delta 的转换功能,并且官方着重讲到了 Ad…
摘要:本文主要介绍 Presto 如何更好的利用 Hudi 的数据布局.索引信息来加速点查性能. 本文分享自华为云社区<华为云基于 Apache Hudi 极致查询优化的探索实践!>,作者:FI_mengtao. 背景 湖仓一体(LakeHouse)是一种新的开放式架构,它结合了数据湖和数据仓库的最佳元素,是当下大数据领域的重要发展方向. 华为云早在2020年就开始着手相关技术的预研,并落地在华为云 FusionInsight MRS智能数据湖解决方案中. 目前主流的三大数据湖组件 Apach…
背景 随着大数据业务的发展,基于 Hive 的数仓体系逐渐难以满足日益增长的业务需求,一方面已有很大体量的用户,但是在实时性,功能性上严重缺失:另一方面 Hudi,Iceberg 这类系统在事务性,快照管理上带来巨大提升,但是对已经存在的 Hive 用户有较大的迁移成本,并且难以满足流式计算毫秒级延迟的需求.为了满足网易内外部客户对于流批一体业务的需求,网易数帆基于 Apache Iceberg 研发了新一代流式湖仓,相较于 Hudi,Iceberg 等传统湖仓,它提供了流式更新,维表 Join…