BP的matlab实现】的更多相关文章

%2015.04.26 Kang Yongxin ----v 2.0 %完成作业中BP算法,采用批量方式更新权重 %% %输入数据格式 %x 矩阵 : 样本个数*特征维度 %y 矩阵 :样本个数*类别个数(用01000形式表示) close all; clear all; clc ; load data.mat;% x_test=x(1:3:30,:);%从原始数据中留出一部分 作为测试样本 y_test=y(1:3:30,:); x_train=[x(2:3:30,:);x(3:3:30,:)…
在人的大脑里有数以万计的神经元,它们之间通过神经突触来连接.用以判断. BP神经网络 MATLAB实现:…
本文主要内容包含: (1) 介绍神经网络基本原理,(2) AForge.NET实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法 . 第0节.引例  本文以Fisher的Iris数据集作为神经网络程序的測试数据集.Iris数据集能够在http://en.wikipedia.org/wiki/Iris_flower_data_set  找到.这里简要介绍一下Iris数据集: 有一批Iris花,已知这批Iris花可分为3个品种,现须要对其进行分类.不同品种的Iris花的花萼长度.花萼…
人工神经网络概述: 人工神经元模型: 神经网络的分类: 按照连接方式,可以分为:前向神经网络 vs. 反馈(递归)神经网络: 按照学习方式,可以分为:有导师学习神经网络 vs. 无导师学习神经网络: 按照实现功能,可以分为:拟合(回归)神经网络 vs. 分类神经网络. 数据归一化:将数据映射到[0, 1]或[-1, 1]区间或其他的区间. 数据归一化的原因: 1.输入数据的单位不一样,有些数据的范围可能特别大,导致的结果是神经网络收敛慢.训练时间长.2.数据范围大的输入在模式分类中的作用可能会偏…
1.神经网络工具箱概述 Matlab神经网络工具箱几乎包含了现有神经网络的最新成果,神经网络工具箱模型包括感知器.线性网络.BP网络.径向基函数网络.竞争型神经网络.自组织网络和学习向量量化网络.反馈网络.本文只介绍BP神经网络工具箱. 2.BP神经网络工具箱介绍 BP神经网络学习规则是不断地调整神经网络的权值和偏值,使得网络输出的均方误差和最小.下面是关于一些BP神经网络的创建和训练的名称: (1)newff:创建一前馈BP网络(隐含层只有一层) (2)newcf:创建一多层前馈BP网络(隐含…
MATLAB 中BP神经网络算法的实现 BP神经网络算法提供了一种普遍并且实用的方法从样例中学习值为实数.离散值或者向量的函数,这里就简单介绍一下如何用MATLAB编程实现该算法. 具体步骤   这里以一个普遍实用的简单案例为例子进行编程的说明. 假设一组x1,x2,x3的值对应一个y值,有2000组这样的数字,我们选择其中1900组x1,x2,x3和y作为样本,其余100组x1,x2,x3作为测试数据来验证.   首先需要读取这些数据,并把数据赋值给input 和 output . 我是把数据…
基本就三个函数: newff():创建一个bp神经网络 train():训练函数 sim():仿真函数 同时具有可视化界面,但目前不知道可视化界面如何进行仿真,且设置不太全 工具箱:Neural net fitting textread使用方法:http://blog.sina.com.cn/s/blog_9e67285801010bju.html ex1. clear; clc; %注意P矩阵,matlab默认将一列作为一个输入 P=[0.5152 0.8173 1.0000 ; 0.8173…
2.1 案例背景 在工程应用中经常会遇到一些复杂的非线性系统,这些系统状态方程复杂,难以用数学方法准确建模.在这种情况下,可以建立BP神经网络表达这些非线性系统.该方法把未知系统看成是一个黑箱,首先用系统输入输出数据训练BP神经网络,使网络能够表达该未知函数,然后用训练好的BP神经网络预测系统输出. 本章拟合的非线性函数为\[y = {x_1}^2 + {x_2}^2\]该函数的图形如下图所示. t=-5:0.1:5; [x1,x2] =meshgrid(t); y=x1.^2+x2.^2; s…
1.1 案例背景 1.1.1 BP神经网络概述 BP神经网络是一种多层前馈神经网络,该网络的主要特点是信号前向传递,误差反向传播.在前向传递中,输入信号从输入层经隐含层逐层处理,直至输出层.每一层的神经元状态只影响下一层神经元状态.如果输出层得不到期望输出,则转入反向传播,根据预测误差调整网络权值和阔值,从而使BP神经网络预测输出不断逼近期望输出.当输入节点数为$n$.输出节点数为$m$时, BP 神经网络就表达了从$n$个自变量到$m$个因变量的函数映射关系. BP 神经网络预测前首先要训练网…
1.粒子群优化算法 粒子群算法(particle swarm optimization,PSO)由Kennedy和Eberhart在1995年提出,该算法模拟鸟集群飞行觅食的行为,鸟之间通过集体的协作使群体达到最优目的,是一种基于 Swarm Inteligence的优化方法.同遗传算法类似,也是一种基于群体叠代的,但并没有遗传算法用的交叉以及变异,而是粒子在解空间追随最优的粒子进行搜索.PSO的优势在于简单容易实现同时又有深刻的智能背景,既适合科学研究,又特别适合工程应用,并且没有许多参数需要…