pandas内存优化分享 缘由 最近在做Kaggle上的wiki文章流量预测项目,这里由于个人电脑配置问题,我一直都是用的Kaggle的kernel,但是我们知道kernel的内存限制是16G,如下: 在处理数据过程中发现会超出,虽然我们都知道对于大数据的处理有诸如spark等分布式处理框架,但是依然存在下面的问题: 对于个人来说,没有足够的资源让这些框架发挥其优势: 从处理数据的库丰富程度上,还是pandas等更具有优势: 很多时候并不是pandas无法处理,只是数据未经优化: 所以这里还是考…
Kaggle网站流量预测任务第一名解决方案:从模型到代码详解时序预测 2017年12月13日 17:39:11 机器之心V 阅读数:5931   近日,Artur Suilin 等人发布了 Kaggle 网站流量时序预测竞赛第一名的详细解决方案.他们不仅公开了所有的实现代码,同时还详细解释了实现的模型与经验.机器之心简要介绍了他们所实现的模型与经验,更详细的代码请查看 GitHub 项目. GitHub 项目地址:https://github.com/Arturus/kaggle-web-tra…
https://mp.weixin.qq.com/s/JwRXBNmXBaQM2GK6BDRqMw 选自GitHub 作者:Artur Suilin 机器之心编译 参与:蒋思源.路雪.黄小天 近日,Artur Suilin 等人发布了 Kaggle 网站流量时序预测竞赛第一名的详细解决方案.他们不仅公开了所有的实现代码,同时还详细解释了实现的模型与经验.机器之心简要介绍了他们所实现的模型与经验,更详细的代码请查看 GitHub 项目. GitHub 项目地址:https://github.com…
如何使用Python在Kaggle竞赛中成为Top15 Kaggle比赛是一个学习数据科学和投资时间的非常的方式,我自己通过Kaggle学习到了很多数据科学的概念和思想,在我学习编程之后的几个月就开始了Kaggle比赛,最近还赢得了几个比赛. 要在Kaggle比赛中取得好成绩不仅仅是要求知道一些机器学习算法,而且要有一个准确的思维模式,好学,花大量的时间探索数据.虽然,在很多方面通常都不强调在开始Kaggle比赛的时候使用教程(tutorials),但是在这里,我将告诉大家如何开始Kaggle…
初窥Kaggle竞赛 原文地址: https://www.dataquest.io/mission/74/getting-started-with-kaggle 1: Kaggle竞赛 我们接下来将要学习如果在Kaggle竞赛上进行一次提交.Kaggle是一个创造算法,与来自全世界的机器学习练习者竞赛的平台.你的算法在给定的数据集中准确率越高你就赢了.Kaggle是一个有趣的途径去联系机器学习技能. Kaggle网站上有不同的竞赛.有一个是预测哪个成哥在泰坦尼克号上存活下来.在接下去的任务中,我…
<机器学习及实践--从零开始通往Kaggle竞赛之路> 在开始说之前一个很重要的Tip:电脑至少要求是64位的,这是我的痛. 断断续续花了个把月的时间把这本书过了一遍.这是一本非常适合基于python入门的机器学习入门的书籍,全书通俗易懂且有代码提供.书中源代码连接为Ipython环境.主页君使用的是pycharm,python2.7,具体安转过程书本写的很详细.码完书中代码,有一点点点小不符(或许可能是因为平台不一样),百度基本可以解决问题(有问题也可以留言探讨).贴一点代码,以示学习: 1…
<Python 机器学习及实践–从零开始通往kaggle竞赛之路>很基础 主要介绍了Scikit-learn,顺带介绍了pandas.numpy.matplotlib.scipy. 本书代码基于python2.x.不过大部分可以通过修改print()来适应python3.5.x. 提供的代码默认使用 Jupyter Notebook,建议安装Anaconda3. 最好是到https://www.kaggle.com注册账号后,运行下第四章的代码,感受下. 监督学习: 2.1.1分类学习(Cla…
kaggle竞赛分享:NFL大数据碗 - 上 竞赛简介 一年一度的NFL大数据碗,今年的预测目标是通过两队球员的静态数据,预测该次进攻推进的码数,并转换为该概率分布: 竞赛链接 https://www.kaggle.com/c/nfl-big-data-bowl-2020 项目链接,该项目代码已经public,大家可以copy下来直接运行 https://www.kaggle.com/holoong9291/nfl-big-data-bowl github仓库链接,更多做的过程中的一些思考.问题…
本文翻译自kaggle learn,也就是kaggle官方最快入门kaggle竞赛的教程,强调python编程实践和数学思想(而没有涉及数学细节),笔者在不影响算法和程序理解的基础上删除了一些不必要的废话,毕竟英文有的时候比较啰嗦. 一.决策树算法基本原理 背景:假设你的哥哥是一个投资房地产的大佬,投资地产赚了很多钱,你的哥哥准备和你合作,因为你拥有机器学习的知识可以帮助他预测房价.你去问你的哥哥他是如何预测房价的,他告诉你说他完全是依靠直觉,但是你经过调查研究发现他预测房价是根据房价以往的表现…
本文翻译自kaggle learn,也就是kaggle官方最快入门kaggle竞赛的教程,强调python编程实践和数学思想(而没有涉及数学细节),笔者在不影响算法和程序理解的基础上删除了一些不必要的废话,英文有的时候比较啰嗦. 一.什么是模型验证 模型验证在机器学习当中非常重要,因为有的时候拟合出来的模型误差非常大而自己却不知道,就会造成很大的失误.在kaggle竞赛入门(二)当中,我们利用决策树算法已经拟合出来了一个模型,那么如何去验证这个模型的准确性呢?那就是使用真实值和预测值的差值的绝对…
目录 网络流量预测入门(二)之LSTM介绍 LSTM简介 Simple RNN的弊端 LSTM的结构 细胞状态(Cell State) 门(Gate) 遗忘门(Forget Gate) 输入门(Input Gate) Cell State的更新 输出门(Output Gate) 输出$h_t$ 总结 参考 网络流量预测入门(二)之LSTM介绍 ​ 这篇blog大家就随便看一下吧,基本上是参照RNN模型与NLP应用(4/9):LSTM模型这个是video和Understanding LSTM Ne…
时间格式的转化 查看数据类型 查看DataFrame的详细信息 填充缺失值 category 数据类型转化 模型参数设定 结论 该项目是针对kaggle中的homesite进行的算法预测,使用xgboost的sklearn接口,进行数据建模,购买预测. import pandas as pd import numpy as np import xgboost as xgb from sklearn.model_selection import StratifiedKFold from sklea…
目录 网络流量预测入门(一)之RNN 介绍 RNN简介 RNN 结构 RNN原理 结构原理 损失函数$E$ 反向传播 总结 参考 网络流量预测入门(一)之RNN 介绍 了解RNN之前,神经网络的知识是前提,如果想了解神经网络,可以去参考一下我之前写的博客:数据挖掘入门系列教程(七点五)之神经网络介绍 and 数据挖掘入门系列教程(八)之使用神经网络(基于pybrain)识别数字手写集MNIST 这篇博客介绍RNN的原理,同时推荐大家去看李宏毅老师的课程:ML Lecture 21-1: Recu…
转: <PYTHON机器学习及实践-从零开始通往KAGGLE竞赛之路> 分享下载 书籍信息 书名: PYTHON机器学习及实践-从零开始通往KAGGLE竞赛之路 标签: PYTHON机器学习及实践-从零开始通往KAGGLE竞赛之路,免费,程序员书籍,编程,pdf,电子书 下载地址 https://590m.com/file/18765121-475905678 转: <PYTHON机器学习及实践-从零开始通往KAGGLE竞赛之路> 分享下载…
目录 网络流量预测入门(三)之LSTM预测网络流量 数据集介绍 预测流程 数据集准备 SVR预测 LSTM 预测 优化点 网络流量预测入门(三)之LSTM预测网络流量 在上篇博客LSTM机器学习生成音乐中,介绍了如何使用LSTM生成音乐,而在上上篇网络流量预测入门(二)之LSTM介绍中,介绍了LSTM的基本原理 在这篇博客中,将介绍如何使用SVR和LSTM对网络流量进行预测. LSTM介绍:网络流量预测入门(二)之LSTM介绍.LSTM机器学习生成音乐 An Introduction to Su…
Bulk异常引发的Elasticsearch内存泄漏 2018年8月24日更新: 今天放出的6.4版修复了这个问题. 前天公司度假部门一个线上ElasticSearch集群发出报警,有Data Node的Heap使用量持续超过80%警戒线. 收到报警邮件后,不敢怠慢,立即登陆监控系统查看集群状态.还好,所有的结点都在正常服务,只是有2个结点的Heap使用率非常高.此时,Old GC一直在持续的触发,却无法回收内存.   Heap Used % 初步排查 问题结点的Heap分配了30GB,80%的…
完整代码见kaggle kernel 或 Github 比赛页面:https://www.kaggle.com/c/house-prices-advanced-regression-techniques 这个比赛总的情况就是给你79个特征然后根据这些预测房价 (SalePrice),这其中既有离散型也有连续性特征,而且存在大量的缺失值.不过好在比赛方提供了data_description.txt这个文件,里面对各个特征的含义进行了描述,理解了其中内容后对于大部分缺失值就都能顺利插补了. 参加比赛…
完整代码见kaggle kernel 或 NbViewer 比赛页面:https://www.kaggle.com/c/titanic Titanic大概是kaggle上最受欢迎的项目了,有7000多支队伍参加,多年来诞生了无数关于该比赛的经验分享.正是由于前人们的无私奉献,我才能无痛完成本篇. 事实上kaggle上的很多kernel都聚焦于某个特定的层面(比如提取某个不为人知的特征.使用超复杂的算法.专做EDA画图之类的),当然因为这些作者本身大都是大神级别的,所以平日里喜欢钻研一些奇淫巧技.…
之前写了这篇文章.现在把他搬到知乎live上了.书非借不能读也,因此搞了点小费用,如果你觉得贵,加我微信我给你发红包返回给你. 最近的空余时间拿去搞kaggle了, 好久没更新文章了.今天写写kaggle首秀的一段baseline吧. 这个题目是intel的癌症预测.我之前本来是想打谷歌的视频多标签分类的,但是那个数据量大,需要用谷歌云,然后呢,需要用双币信用卡注册,结果我的双币信用卡没有开通国外账户,考虑到安全性(去年我一个同事的信用卡直接在澳大利亚被盗刷),就换成了这个比赛了. 这个比赛很简…
引言 这段时间来,看了西瓜书.蓝皮书,各种机器学习算法都有所了解,但在实践方面却缺乏相应的锻炼.于是我决定通过Kaggle这个平台来提升一下自己的应用能力,培养自己的数据分析能力. 我个人的计划是先从简单的数据集入手如手写数字识别.泰坦尼克号.房价预测,这些目前已经有丰富且成熟的方案可以参考,之后关注未来就业的方向如计算广告.点击率预测,有合适的时机,再与小伙伴一同参加线上比赛. 数据集 介绍 MNIST ("Modified National Institute of Standards an…
目录 前言 相关性分析 数据 数据特点 相关性分析 数据预处理 预测模型 Logistic回归训练模型 模型优化 前言 一般接触kaggle的入门题,已知部分乘客的年龄性别船舱等信息,预测其存活情况,二分类问题. python,所需库 机器学习scikit-learn,数据分析pandas,科学计算numpy,画图工具matplotlib,详细的指导说明 本篇大多是整理了下寒小阳的博文,按照他的思路先熟悉一下. 相关性分析 数据 数据如表所示,Pclass 等级,Sibsp 同辈亲戚人数,Par…
1.Bike Sharing Demand kaggle: https://www.kaggle.com/c/bike-sharing-demand 目的:根据日期.时间.天气.温度等特征,预测自行车的租借量 处理:1.将日期(含年月日时分秒)提取出年,月, 星期几,以及小时 2.season, weather都是类别标记的,利用哑变量编码 算法模型选取: 回归问题:1.RandomForestRegressor 2.GradientBoostingRegressor # -*- coding:…
内容简介 本书面向所有对机器学习与数据挖掘的实践及竞赛感兴趣的读者,从零开始,以Python编程语言为基础,在不涉及大量数学模型与复杂编程知识的前提下,逐步带领读者熟悉并且掌握当下最流行的机器学习.数据挖掘与自然语言处理工具,如Scikitlearn.NLTK.Pandas.gensim.XGBoost.Google Tensorflow等. 全书共分4章.第1章简介篇,介绍机器学习概念与Python编程知识:第2章基础篇,讲述如何使用Scikitlearn作为基础机器学习工具:第3章进阶篇…
What is your first plan of action when working on a new competition? 理解竞赛,数据,评价标准. 建立交叉验证集. 制定.更新计划. 检索类似竞赛和相关论文. What does your iteration cycle look like? Sacrifice a couple of submissions in the beginning of the contest to understand the importance…
点击获取提取码:i5nw Python机器学习及实践面向所有对机器学习与数据挖掘的实践及竞赛感兴趣的读者,从零开始,以Python编程语言为基础,在不涉及大量数学模型与复杂编程知识的前提下,逐步带领读者熟悉并且掌握当下流行的机器学习.数据挖掘与自然语言处理工具,如Scikit-learn.NLTK.Pandas.gensim.XGBoost.Google Tensorflow等. 全书共分4章.第1章简介篇,介绍机器学习概念与Python编程知识:第2章基础篇,讲述如何使用Scikit-lear…
图片数据:卷积还是王道,有几个比较通用性的框架被人拿来改来改去 非图片特征数据:用分类: boost系列算法:牛逼的框架实现 xgboost AdaBoost算法针对不同的训练集训练同一个基本分类器(弱分类器),然后把这些在不同训练集上得到的分类器集合起来,构成一个更强的最终的分类器(强分类器).理论证明,只要每个弱分类器分类能力比随机猜测要好,当其个数趋向于无穷个数时,强分类器的错误率将趋向于零.AdaBoost算法中不同的训练集是通过调整每个样本对应的权重实现的.最开始的时候,每个样本对应的…
  主要是通过mnist了解kaggle的操作细节,最终这里的结果为: 引入必须的库¶ import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg import seaborn as sns #专门用于数据可视化的 %matplotlib inline np.random.seed(2) from sklearn.model_selection im…
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share https://www.kaggle.com/…
https://yq.aliyun.com/articles/293596 https://www.kaggle.com/c/outbrain-click-prediction https://www.kaggle.com/anokas/outbrain-eda 用户个性化点击率预估 基本场景: document_id(document) uuid(user) ad_id(a set of ads) 原始数据: page_views.csv: the log of users visiting…
ARIMA模型实例讲解:时间序列预测需要多少历史数据? from:https://www.leiphone.com/news/201704/6zgOPEjmlvMpfvaB.html   雷锋网按:本文源自美国机器学习专家 Jason Brownlee 的博客,雷锋网(公众号:雷锋网)编译. 时间序列预测,究竟需要多少历史数据? 显然,这个问题并没有一个固定的答案,而是会根据特定的问题而改变. 在本教程中,我们将基于 Python 语言,对模型输入大小不同的历史数据,对时间序列预测问题展开讨论,…