学习TensorFlow,多层卷积神经网络】的更多相关文章

上一篇笔记主要介绍了卷积神经网络相关的基础知识.在本篇笔记中,将参考TensorFlow官方文档使用mnist数据集,在TensorFlow上训练一个多层卷积神经网络. 下载并导入mnist数据集 首先,利用input_data.py来下载并导入mnist数据集.在这个过程中,数据集会被下载并存储到名为"MNIST_data"的目录中. import input_data mnist = input_data.read_data_sets('MNIST_data', one_hot=T…
CNN学习笔记:卷积神经网络 卷积神经网络 基本结构 卷积神经网络是一种层次模型,其输入是原始数据,如RGB图像.音频等.卷积神经网络通过卷积(convolution)操作.汇合(pooling)操作和非线性激活函数的映射等一系列操作的层层堆叠,将高层语义信息逐层由原始信息中抽取出来,逐层抽象. 将信息逐渐抽象出来的过程称为前馈运算(Feed-Forward).通过计算预测值与真实值之间的误差和损失,凭借反向传播算法(Back-Propagation algorithm)将误差或损失由最后一层逐…
折腾了几天,爬了大大小小若干的坑,特记录如下.代码在最后面. 环境: Python3.6.4 + TensorFlow 1.5.1 + Win7 64位 + I5 3570 CPU 方法: 先用MNIST手写数字库对CNN(卷积神经网络)进行训练,准确度达到98%以上时,再准备独家手写数字10个.画图软件编辑的数字10个共计20个,让训练好的CNN进行识别,考察其识别准确度. 调试代码: 坑1:ModuleNotFoundError: No module named 'google' 解决:pi…
1 卷积神经网络简介 在介绍卷积神经网络(CNN)之前,我们需要了解全连接神经网络与卷积神经网络的区别,下面先看一下两者的结构,如下所示: 图1 全连接神经网络与卷积神经网络结构 虽然上图中显示的全连接神经网络结构和卷积神经网络的结构直观上差异比较大,但实际上它们的整体架构是非常相似的.从上图中可以看出,卷积神经网络也是通过一层一层的节点组织起来的.和全连接神经网络一样,卷积神经网络中的每一个节点都是一个神经元.在全连接神经网络中,每相邻两层之间的节点都有边相连,于是一般会将每一层全连接层中的节…
tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图 因为很多 demo 都比较复杂,专门抽出这两个函数,写的 demo. 更多教程:http://www.tensorflownews.com #!/usr/bin/python # -*- coding: UTF-8 -*- import matplotlib.pyplot as plt import tensorflow as tf from PIL import Image import numpy img = Ima…
卷积神经网络比神经网络稍微复杂一些,因为其多了一个卷积层(convolutional layer)和池化层(pooling layer). 使用mnist数据集,n个数据,每个数据的像素为28*28*1=784.先让这些数据通过第一个卷积层,在这个卷积上指定一个3*3*1的feature,这个feature的个数设为64.接着经过一个池化层,让这个池化层的窗口为2*2.然后在经过一个卷积层,在这个卷积上指定一个3*3*64的feature,这个featurn的个数设置为128,.接着经过一个池化…
卷积神经网络大总结(个人理解) 神经网络 1.概念:从功能他们模仿真实数据 2.结构:输入层.隐藏层.输出层.其中隐藏层要有的参数:权重.偏置.激励函数.过拟合 3.功能:能通过模仿,从而学到事件 其中过拟合:电脑太过于自信,想把所有的数据都模拟下来.但是这并不符合我们的实际的需求 激励函数:激活某一些参数 卷积神经网络: 1.一般的结构:输入数据.卷积层.池化层.卷积层.池化层.全连接层.全连接层.误差分析.参数优化.显示精确度 2.每一个层的要求: 输入数据:类型:[-1(表示能接受任意张图…
卷积神经网络(Convolutional Neural Network,CNN),可以解决图像识别.时间序列信息问题.深度学习之前,借助SIFT.HoG等算法提取特征,集合SVM等机器学习算法识别图像. SIFT,缩放.平移.旋转.视角转变.亮度调整畸变的一定程度内,具有不变性.有局限性,ImageNet ILSVRC比赛最好结果错误率在26%以上,常年难以突破. 卷积神经网络提取特征效果更好,分类训练时自动提取最有效特征.卷积神经网络CNN,降低图像数据预处理要求,避免复杂特征工程.CNN使用…
TensorFlow 官方文档:https://www.tensorflow.org/api_guides/python/math_ops # Arithmetic Operators import tensorflow as tf # 用 tf.session.run() 里 feed_dict 参数设置占位 tensor, 如果传入 feed_dict的数据与 tensor 类型不符,就无法被正确处理 x = tf.placeholder(tf.string) y = tf.placehol…
前馈神经网络的弊端 前一篇文章介绍过MNIST,是采用的前馈神经网络的结构,这种结构有一个很大的弊端,就是提供的样本必须面面俱到,否则就容易出现预测失败.如下图: 同样是在一个图片中找圆形,如果左边为训练样本,右边为测试样本,如果只训练了左边的情况,右边的一定会预测错误,然而在我们人眼看来,这两个圆形的特征其实是一样的,不过是移动了一个位置而已,但是因为前馈网络结构的原因,导致在做权重分配的时候,把更多的权重分配给了左上角,右下角分配的较少,所以在做最终预测,便会出现较大的误差.所以,我们需要在…