http://blog.csdn.net/pipisorry/article/details/48882167 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记之局部敏感哈希LSH的距离度量方法 Distance Measures距离度量方法 {There are many other notions of similarity(beyond jaccard similarity) or distance and whi…
http://blog.csdn.net/pipisorry/article/details/48858661 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记之 Locality-Sensitive Hashing(LSH) 局部敏感哈希 {This is the first half of discussion of a powerful technique for focusing search on things…
http://blog.csdn.net/pipisorry/article/details/48914067 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记之关联规则Apriori算法的改进:非hash方法 - 大数据集下的频繁项集:挖掘随机采样算法.SON算法.Toivonen算法 Apriori算法的改进:大数据集下的频繁项集挖掘 1. 前面所讨论的频繁项都是在一次能处理的情况.如果数据量过大超过了主存的大小,这…
http://blog.csdn.net/pipisorry/article/details/48894963 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记之Nearest-Neighbor Learning,KNN最近邻学习 {The module is about large scale machine learning.} Supervised Learning监督学习 Note: y有多种不同的形式,对应不同…
http://blog.csdn.net/pipisorry/article/details/48901217 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记之关联规则Apriori算法的改进:基于hash的方法:PCY算法, Multistage算法, Multihash算法 Apriori算法的改进 {All these extensions to A-Priori have the goal of minimiz…
http://blog.csdn.net/pipisorry/article/details/48894977 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记之association rules关联规则与频繁项集挖掘 {Frequent Itemsets: Often called "association rules," learn a number of techniques for finding it…
http://blog.csdn.net/pipisorry/article/details/49686913 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记 相似项的发现:局部敏感哈希(LSH, Locality-Sensitive Hashing) {博客内容:More about Locality-Sensitive Hashing:在海量数据挖掘MMDS week2: 局部敏感哈希Locality-Sensit…
http://blog.csdn.net/pipisorry/article/details/49052255 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记之社交网络之社区检测:高级技巧-线性代数方法 Communities in Social Networks:  Intuitively, "communities" are sets of individuals in a network like Fa…
http://blog.csdn.net/pipisorry/article/details/49427989 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记 推荐系统Recommendation System之隐语义模型latent semantic analysis {博客内容:Clustering.  The problem is to take large numbers of points and group…
http://blog.csdn.net/pipisorry/article/details/49205589 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记 推荐系统Recommendation System {博客内容:推荐系统构建三大方法:基于内容的推荐content-based,协同过滤collaborative filtering,隐语义模型(LFM, latent factor model)推荐.这篇博客只…