从FCN到DeepLab】的更多相关文章

图像语义分割,简单而言就是给定一张图片,对图片上的每一个像素点分类. 图像语义分割,从FCN把深度学习引入这个任务,一个通用的框架事:前端使用FCN全卷积网络输出粗糙的label map,后端使用CRF条件随机场/MRF马尔科夫随机场等优化前端的输出,最后得到一个精细的分割图. 前端 为什么需要FCN? 分类网络通常会在最后连接几层全连接层,它会将原来二维的矩阵(图片)压缩成一维的,从而丢失了空间信息,最后训练输出一个标量,这就是我们的分类标签. 而图像语义分割的输出需要是个分割图,且不论尺寸大…
部分转自:https://zhuanlan.zhihu.com/p/37618829 一.语义分割基本介绍 1.1 概念 语义分割(semantic segmentation) : 就是按照"语义"给图像上目标类别中的每一点打一个标签,使得不同种类的东西在图像上被区分开来.可以理解成像素级别的分类任务. 输入: (HW3)就是正常的图片 输出: ( HWclass )可以看为图片上每个点的one-hot表示,每一个channel对应一个class,对每一个pixel位置,都有class…
第六讲_图像分割Image Segmentation 语义分割(semantic segmentation) 常用神经网络介绍对比-FCN SegNet U-net DeconvNet 目录 +三大数据库 显著性检测saliency detection 两类问题 数据集的标注 DNN网络:VGG改进而来,分割输出是和原图大小一样:实际该模型就是全卷积网络 物体分割 object segmentation 前背景分割(前景包含物体,需要提供初始标记) Graph Cuts分割 GrabCut分割:…
Conditional Random Fields as Recurrent Neural Networks ICCV2015    cite237 1摘要: 像素级标注的重要性(语义分割 图像理解)-- 现在开始利用DL----但DL无法描述visual objects----本文引入新型的CNN,将CNN与CRF概率图模型结合---用高斯pairwise势函数定义的CRF作为RNN,记为CRF-RNN----将其作为CNN的一部分,使得深度模型同时具有CNN和CRF的特性,同时本文算法完美结…
简介 语义分割:给图像的每个像素点标注类别.通常认为这个类别与邻近像素类别有关,同时也和这个像素点归属的整体类别有关.利用图像分类的网络结构,可以利用不同层次的特征向量来满足判定需求.现有算法的主要区别是如何提高这些向量的分辨率,以及如何组合这些向量. 几种结构 全卷积网络FCN:上采样提高分割精度,不同特征向量相加.[3] UNET:拼接特征向量:编码-解码结构:采用弹性形变的方式,进行数据增广:用边界加权的损失函数分离接触的细胞.[4] SegNet:记录池化的位置,反池化时恢复.[3] P…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-detail/273 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为 斯坦福CS231n <深度学习与计算机视觉(Deep Learning for Computer Vision)>的全套学习笔记,对应的课程视频可以在 这里 查看.更多资料获取方式见文末…
最近看了几篇文章,其中均用到了hole algorithm. 最早用的就是deeplab的文章了,Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFS  这篇文章和fcn不同的是,在最后产生score map时,不是进行upsampling,而是采用了hole algorithm,就是在pool4和pool5层,步长由2变成1,必然输出的score map变大了,但是receptive…
图像语义分割的意思就是机器自动分割并识别出图像中的内容,我的理解是抠图- 之前在Faster R-CNN中借用了RPN(region proposal network)选择候选框,但是仅仅是候选框,那么我想提取候选框里面的内容,就是图像语义分割了. 简单的理解就是,图像的"分词技术". 参考文献: 1.知乎,困兽,关于图像语义分割的总结和感悟 2.微信公众号,沈MM的小喇叭,十分钟看懂图像语义分割技术 . . 一.FCN全卷积:Fully Convolutional Networks…
一.CocoStuff简介 CocoStuff是一款为deeplab设计的,运行在Matlab中的语义标定工具,其标定结果和结合Deeplab训练出的结果均为mat文件格式,该项目源码已在github上进行开源. 二.说明 本文为系列博客第一篇,主要对项目readme进行简单的翻译,主要是为了自己在学习踩坑过程中方便查阅说明,如果能帮到大家便是极好的. *注:未完,部分只是先扔上来,将来会继续完善. 笔者在探索之前并未在网上搜索到关于CocoStuff的相关中文博客,所以这可能是第一篇,有那里不…
一. 图像语义分割 传统的图像分割方法主要包括以下几种: 1)基于边缘检测 2)基于阈值分割 比如直方图,颜色,灰度等 3)水平集方法 这里我们要说的是语义分割,什么是语义分割呢?先来看张图: 将目标按照其分类进行像素级的区分,比如区分上图的 摩托车 和 骑手,这就是语义分割,语义分割赋予了场景理解更进一步的手段. 我们直接跳过传统的语义分割方法,比如 N-Cut,图割法等,直接进入深度学习. 二. FCN 的引入 CNN 在图像分割中应用,起源于2015年的这篇影响深远的文章: Fully C…