TensorBoard TensorFlow自带的可视化工具,能够以直观的流程图的方式,清楚展示出整个神经网络的结构和框架,便于理解模型和发现问题. 可视化学习:https://www.tensorflow.org/guide/summaries_and_tensorboard 图的直观展示:https://www.tensorflow.org/guide/graph_viz 直方图信息中心:https://www.tensorflow.org/guide/tensorboard_histogr…
一.TensorFlow高层次机器学习API (tf.contrib.learn) 1.tf.contrib.learn.datasets.base.load_csv_with_header 加载csv格式数据 2.tf.contrib.learn.DNNClassifier 建立DNN模型(classifier) 3.classifer.fit 训练模型 4.classifier.evaluate 评价模型 5.classifier.predict 预测新样本 完整代码: from __fut…
tensorboard的使用 官方文档 # writer.add_scalar() # 添加标量 """ Args: tag (string): Data identifier # 图表的Title scalar_value (float or string/blobname): Value to save # 对应的y轴 global_step (int): Global step value to record # 对应的x轴 walltime (float): Opti…
tf.summary模块的简介 在TensorFlow中,最常用的可视化方法有三种途径,分别为TensorFlow与OpenCv的混合编程.利用Matpltlib进行可视化.利用TensorFlow自带的可视化工具TensorBoard进行可视化.这三种方法,在前面博客中都有过比较详细的介绍.但是,TensorFlow中最重要的可视化方法是通过tensorBoard.tf.summary和tf.summary.FileWriter这三个模块相互合作来完成的. tf.summary模块的定义位于s…
0703-可视化工具tensorboard和visdom 目录 一.可视化工具概述 二.TensorBoard 三.Visdom 3.1 visdom 概述 3.2 visdom 的常用操作 3.3 visdom.line 可视化和 update 操作 3.4 visdom.image(images) 可视化 3.5 visdom.text 可视化 pytorch完整教程目录:https://www.cnblogs.com/nickchen121/p/14662511.html 一.可视化工具概…
title: 使用TensorBoard可视化工具 date: 2018-04-01 13:04:00 categories: deep learning tags: TensorFlow TensorBoard 图表可视化在理解和调试时显得非常有帮助. 安装: pip3 install --upgrade tensorboard 名称域(Name scoping)和节点(Node) 典型的TensorFlow有数以千计的节点,为了简单起见,我们可以为变量名(节点)划分范围. 这个范围称为名称域…
可视化学习Tensorboard TensorBoard 涉及到的运算,通常是在训练庞大的深度神经网络中出现的复杂而又难以理解的运算.为了更方便 TensorFlow 程序的理解.调试与优化,发布了一套叫做 TensorBoard 的可视化工具.你可以用 TensorBoard 来展现你的 TensorFlow 图像,绘制图像生成的定量指标图以及附加数据. 数据序列化-events文件 TensorBoard 通过读取 TensorFlow 的事件文件来运行.TensorFlow 的事件文件包括…
TensorBoard简介 TensorBoard是TensorFlow自带的一个强大的可视化工具,也是一个Web应用程序套件.TensorBoard目前支持7种可视化,Scalars,Images,Audio,Graphs,Distributions,Histograms和Embeddings.其中可视化的主要功能如下. (1)Scalars:展示训练过程中的准确率.损失值.权重/偏置的变化情况. (2)Images:展示训练过程中记录的图像. (3)Audio:展示训练过程中记录的音频. (…
下面是TensorFlow可视化MNIST数据集识别程序,可视化内容是,TensorFlow计算图,表(loss, 直方图, 标准差(stddev)) # -*- coding: utf-8 -*- import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from tensorflow.contrib.tensorboard.plugins import projector old_v…
BERT可视化工具体验:bertviz是用于BERT模型注意力层的可视化页面. 1,bertviz的github地址:https://github.com/jessevig/bertviz 2,将bertviz项目clone到本地,启动Jupyter notebbok. D:\PycharmProjects\bertviz-master>jupyter notebook 3,bertviz可视化页面分别包括bertviz_detail.ipynb.bertviz_map.ipynb  .bert…