使用Keras对交通标志进行分类】的更多相关文章

# 使用Keras对交通标志进行分类 一.概述 本文主要记录的在使用Keras过程中,实现交通标志分类,数据集使用的是. 文本主要使用的环境为: Python3.5.2 Tensorflow 1.7 Keras 2.1.4 win10 所有程序均亲测可以通过.文中将使用Keras对图像进行分类处理,处理过程包括了 1.图像的预处理 2.神经网络的训练,得到训练后的模型 3.使用训练后的模型,对图像进行预测. 二.图像预处理 本文获取的交通标志图片,是从德国一家交通标志数据集的站点 上获取图像,因…
人工智能深度学习框架MXNet实战:深度神经网络的交通标志识别训练 MXNet 是一个轻量级.可移植.灵活的分布式深度学习框架,2017 年 1 月 23 日,该项目进入 Apache 基金会,成为 Apache 的孵化器项目.尽管现在已经有很多深度学习框架,包括 TensorFlow, Keras, Torch,以及 Caffe,但 Apache MXNet 因其对多 GPU 的分布式支持而越来越受欢迎. 环境准备1.安装 Anaconda.Anaconda 是一个用于科学计算的 Python…
TSR交通标志检测与识别 说明: 传统图像处理算法的TSR集成在在ARM+DSP上运行,深度学习开发的TSR集成到FPGA上运行. 输入输出接口 Input: (1)图像视频分辨率(整型int) (2)图像视频格式(RGB,YUV,MP4等) (3)摄像头标定参数(中心位置(x,y)和5个畸变 系数(2径向,2切向,1棱向),浮点型float) (4)摄像头初始化参数(摄像头初始位置和三个坐标方向 的旋转角度,车辆宽度高度车速等等,浮点型float) Output: (1)BandingBox左…
https://mp.weixin.qq.com/s/NIza8E5clC18eMF_4GMwDw 深度学习的“深度”层面源于输入层和输出层之间实现的隐含层数目,隐含层利用数学方法处理(筛选/卷积)各层之间的数据,从而得出最终结果.在视觉系统中,深度(vs.宽度)网络倾向于利用已识别的特征,通过构建更深的网络最终来实现更通用的识别.这些多层的优点是各种抽象层次的学习特征. 在未来的某个时候,人们必定能够相对自如地运用人工智能,安全地驾车出行.这个时刻何时到来我无法预见:但我相信,彼时“智能”会显…
我们一般用深度学习做图片分类的入门教材都是MNIST或者CIFAR-10,因为数据都是别人准备好的,有的甚至是一个函数就把所有数据都load进来了,所以跑起来都很简单,但是跑完了,好像自己还没掌握图片分类的完整流程,因为他们没有经历数据处理的阶段,所以谈不上走过一遍深度学习的分类实现过程.今天我想给大家分享两个比较贴近实际的分类项目,从数据分析和处理说起,以Keras为工具,彻底掌握图像分类任务. 这两个分类项目就是:交通标志分类和票据分类.交通标志分类在无人驾驶或者与交通相关项目都有应用,而票…
本文的keras后台为tensorflow,介绍如何利用预编译的模型进行迁移学习,以训练和识别自己的图片集. 官网 https://keras.io/applications/ 已经介绍了各个基于ImageNet的预编译模型,对于我们来说,既可以直接为我所用进行图片识别,也可在其基础上进行迁移学习,以满足自己的需求. 但在迁移学习的例子中,并不描述的十分详细,我将给出一个可运行的代码,以介绍如何进行迁移学习. from tensorflow.keras.applications.vgg19 im…
利用blob检测算法识别交通杆,控制TB3机器人完成对交通杆的起停动作! 上一篇博文中<TB3_Autorace之路标检测>订阅了原始图像信息,经过SIFT检测识别出道路交通标志,这里我们同样订阅树莓派摄像头的原始图像信息对交通杆进行识别,同时我们还订阅了交通杆的状态信息以及任务完成信息,实现杆落即停,杆起即过的功能. 1234567891011121314 self.sub_image_type = "raw" self.pub_image_type = "ra…
我对GAN"生成对抗网络"(Generative Adversarial Networks)的看法: 前几天在公开课听了新加坡国立大学[机器学习与视觉实验室]负责人冯佳时博士在[硬创公开课]的GAN分享.GAN现在对于无监督图像标注来说是个神器,不过在NLP领域用的还不是那么广泛. 笔者看来,深度学习之前都没有对数组分布进行细致考察,譬如之前我对NLP词向量就产生过很多疑虑,为啥这么长条的数据组,没看到很好地去深挖.解读词向量的分布?分布这么重要,不值得Dig Deep? 生成模型GA…
我对GAN"生成对抗网络"(Generative Adversarial Networks)的看法: 前几天在公开课听了新加坡国立大学[机器学习与视觉实验室]负责人冯佳时博士在[硬创公开课]的GAN分享.GAN现在对于无监督图像标注来说是个神器. Deep? 生成模型GAN就是一种在拟合一张图像数组分布的一种模型,是概率统计结合深度学习之后的一次升级. GAN是概率统计到深度学习世界"秀"存在 生成模型分为两个部分:生成模型+判别模型.生成模型学习联合概率分布p(x…
笔者将和大家分享一个结合了TensorFlow和最近发布的slim库的小应用,来实现图像分类.图像标注以及图像分割的任务,围绕着slim展开,包括其理论知识和应用场景. 之前自己尝试过许多其它的库,比如Caffe.Matconvnet.Theano和Torch等.它们各有优劣,而我想要一个可靠灵活的.自带预训练模型的python库.最近,新推出了一款名叫slim的库,slim自带了许多预训练的模型,比如ResNet.VGG.Inception-ResNet-v2(ILSVRC的新赢家)等等.这个…