特殊计数序列——Catalan数】的更多相关文章

Catalan数 前10项 \(1,1,2,5,14,42,132,429,1430,4862\) (注:从第\(0\)项起) 计算式 \(C_n=\frac{1}{n+1}\dbinom{2n}{n}\) \(C_{n+1}=\sum_{i=0}^nC_iC_{n-i}\) \(C_n=\dbinom{2n}{n}-\dbinom{2n}{n-1}\) \(C_n=\frac{4n-2}{n+1}C_{n-1}\) 组合意义 1.由\(n\)个\(+1\)和\(n\)个\(-1\)构成的\(2…
全是入门的一些东西.基本全是从别处抄的. 栈: 支持单端插入删除的线性容器. 也就是说,仅允许在其一端加入一个新元素或删除一个元素. 允许操作的一端也叫栈顶,不允许操作的一端也叫栈底. 数个箱子相叠就可以认为是一个栈,只能在最顶端加入一个新箱子或拿走一个箱子. 栈中的元素遵循后进先出(last in first out,LILO)的规律.即:更早出栈的元素,应为更早入栈者. 这是一个演示: 奇数行为栈中元素(右端可以进行插入删除),元素以逗号隔开, EMPTY表示栈为空 偶数行为进行的操作 EM…
1086 栈 2003年NOIP全国联赛普及组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解       题目描述 Description 栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表. 栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈). 栈的重要性不言自明,任何一门数据结构的课程都会介绍栈.宁宁同学在复习栈的基本概念时,想到了一个书上没有讲过的问题,而他自己无法给出答案,所以需要你…
令h(1)=1, h(0)=1,catalan数满足递归式: h(n)=h(0)*h(n-1)+h(1)*h(n-2)+...+h(n-1)h(0) (n>=2) =C(2n, n)/(n+1) =h(n-1)*2(2n-1)/(n+1) 具体推导请百度,这里只需记得推导公式为h(n)=h(n-1)*2(2n-1)/(n+1)即可. 我们来说说这个的应用吧,从catalan数的定义递归定义可以看出,它是由自己 本身的一部分和n减去一部分 的和得到的,也就是说,有n个物品,1个物品进行操作1,n-…
卡特兰数 Catalan数 ( ACM 数论 组合 ) Posted on 2010-08-07 21:51 MiYu 阅读(13170) 评论(1)  编辑 收藏 引用 所属分类: ACM ( 数论 ) .ACM_资料 .ACM ( 组合 ) 维基百科资料: 卡塔兰数 卡塔兰数是组合数学中一个常出现在各种计数问题中出现的数列.由以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名. 卡塔兰数的一般项公式为                       另类递归式:  h(n)=((4*…
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3324 http://blog.csdn.net/xymscau/article/details/6776182 #include<cstdio> #include<cstring> #include<string> #include<queue> #include<iostream> #include<algorit…
应用一: codevs 3112 二叉树计数  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold   题目描述 Description 一个有n个结点的二叉树总共有多少种形态 输入描述 Input Description 读入一个正整数n 输出描述 Output Description 输出一个正整数表示答案 样例输入 Sample Input 6 样例输出 Sample Output 132 数据范围及提示 Data Size & Hint 1<=n&l…
Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到Catalan数,但是我却花了两个小时去找递推式. 首先 Catalan数 : 基本规律:1,2,5,14,42,132,.......... 典型例题: 1.多边形分割.一个多边形分为若干个三角形有多少种分法. C(n)=∑(i=2...n-1)C(i)*C(n-i+1) 2.排队问题:转化为n个人…
先看2个问题: 问题一: n个元素进栈(栈无穷大),进栈顺序为1,2,3,....n,那么有多少种出栈顺序? 先从简单的入手:n=1,当然只有1种:n=2,可以是1,2  也可以是2,1:那么有2种:n=3,可以是1,2,3或1,3,2或2,1,3或2,3,1或3,2,1:一共5种:容易联想到可能有一个通项公式可以求:(扯一点,以前学栈的时候做过判断一个序列是否为合法的出栈顺序的题目,只要依次检查序列,对于一个元素i,在i后面出来的且序号比i小的肯定是从大到小出来的,比如 4 2 1 3,如果4…
一.catalan数由来和性质 1)由来 catalan数(卡塔兰数)取自组合数学中一个常在各种计数问题中出现的数列.以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名. 卡塔兰数的一般项公式为 令其为h(n)的话,满足h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (n>=2) 我们从中取出的Cn就叫做第n个Catalan数,前几个Catalan数是:1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862,…