一个经典的全连接神经网络,如下图所示,输入层可以看做T0,输出层可以看做$\hat{\mathrm{Y}}$=TL+1. 考虑每一层隐藏层T与X.Y的交互信息:I(X; Ti), I(Ti, Y),交互信息部分的知识参见上一篇文章 在训练过程中每一轮把这两个交互信息画出来,横轴I(X; Ti),纵轴I(Ti, Y),同一颜色多个点代表同一层内多个神经元,不同颜色的点代表不同层数的神经元: round 0-160:I(Ti, Y)快速上升,I(X; Ti)也随之增加 round 170-410: …