【UOJ #105】【APIO2014】Beads and wires】的更多相关文章

http://uoj.ac/problem/105 好神的dp啊. 确定一个点为根之后,蓝线只能是竖着的,不能横跨兄弟. 枚举每个点为根进行树形dp是\(O(n^2)\)的,\(f(x,0/1)\)表示以\(x\)为根的子树中\(x\)是否作为蓝线终点的最大值. 更科学的做法:\(O(1)\)把根从一个father转移到它的son. 需要维护\(f(father,1)\)的最大和次大(防止son作为最大转移到father),利用father的信息更新\(f(son,0)\)和\(f(son,1)…
[UOJ#32][UR #2]跳蚤公路(最短路) 题面 UOJ 题解 不难发现要求的就是是否存在负环.也就是我们只需要找到所有的负的简单环,很容易就可以想到维护路径上和\(x\)相关的内容,即维护一下\(u\)到\(v\)路径上,含有\(kx\)的路径的最小的\(b\).这个可以用\(Floyd\)在\(O(n^5)\)的复杂度中求解.这样子我们用\(f[u][u][k]\)就知道了一个包含了\(u\)的,且\(x\)系数为\(k\)的最小的环,求出其负环的值域范围,接着其能够到达的所有点都会收…
[UOJ 67] 题目链接: 传送门 题解: 第一眼很懵逼……这什么鬼. 思考什么点复合条件……(o(>﹏<)o 1.树,也就是说还剩n-2条边,等价于要删去一个度数为m-n+2的点. 2.还是树,也就是说联通图,等价于选取点不能是割点. ……想不出来了.然后?然后就够了233.证明什么的,显然……(当时智障的我 代码: BZOJ 1123BLO 题目链接: 传送 题解: 此题唯一要求的大概就是某个割点下各个DFS树上子节点的大小. 思考…… DFS树…… 1.点双走的可以看做一个有“回边”的…
[UOJ#236][IOI2016]railroad(欧拉回路,最小生成树) 题面 UOJ 题解 把速度看成点,给定的路段看成边,那么现在就有了若干边,然后现在要补上若干边,以及一条\([inf,\)使得原图存在欧拉回路,那么就变成了求从大往小连边的边长的最小值. 而欧拉回路每个点被来回覆盖的次数左右一定是一样的,假设向右-向左覆盖的次数为\(g_i\),那么如果\(g_i>0\),花费\(1\)的代价向\(i-1\)连边,如果\(g_i>0\),那么则可以不花费代价连边\(i\rightar…
[UOJ#177]欧拉回路 题面 UOJ 题解 首先图不连通就没啥好搞的了. 对于无向图而言,每个点度数为偶数. 对于有向图而言,每个点入度等于出度. 然后就是一本通上有的做法,直接\(dfs\)一遍就好了.. #include<iostream> #include<cstdio> using namespace std; #define MAX 100100 inline int read() { int x=0;bool t=false;char ch=getchar(); w…
[UOJ#311][UNR #2]积劳成疾(动态规划) UOJ Solution 考虑最大值分治解决问题.每次枚举最大值所在的位置,强制不能跨过最大值,左右此时不会影响,可以分开考虑. 那么设\(f[i][j]\)表示长度为\(i\),且最大值不超过\(j\)的所有方案之和. 因为最大值有多个,所以我们钦定每次选择最靠右的那个,所以转移就是: \[f[i][j]=f[i][j-1]+\sum_{k=1}^if[k-1][j]*f[i-k][j-1]*w[j]^{c}\] 即钦定为最靠右的那个最大…
[UOJ#450][集训队作业2018]复读机(生成函数,单位根反演) 题面 UOJ 题解 似乎是\(\mbox{Anson}\)爷的题. \(d=1\)的时候,随便怎么都行,答案就是\(k^n\). \(d=2\)的时候,可以做一个\(dp\),设\(f[i][j]\)表示前\(i\)个复读机选了\(j\)个时间的方案数. 然后枚举当前这个复读机复读的次数,得到: \[f[x][j]=\sum_{i=0}^{j}[2|i]{n-j+i\choose i}f[x-1][j-i]\] 化简啥的之后…
[UOJ#246]套路(动态规划) 题面 UOJ 题解 假如答案的选择的区间长度很小,我们可以做一个暴力\(dp\)计算\(s(l,r)\),即\(s(l,r)=min(s(l+1,r),s(l,r-1),abs(a_r-a_l))\). 我们发现\(s(l,r)\le \frac{m}{r-l+1}\),那么当长度足够大的时候\(s(l,r)\)的取值很小. 所以我们对于询问分治处理,当长度小于\(\sqrt m\)时,直接\(dp\)计算贡献. 否则,当长度大于\(\sqrt m\)时,枚举…
[UOJ#340][清华集训2017]小 Y 和恐怖的奴隶主(矩阵快速幂,动态规划) 题面 UOJ 洛谷 题解 考虑如何暴力\(dp\). 设\(f[i][a][b][c]\)表示当前到了第\(i\)次攻击,还剩下的\(1,2,3\)血的奴隶主个数为\(a,b,c\)的概率,每次考虑打到了哪里,做一个转移. 这样子,状态数就是把不超过\(8\)个东西分配到\(3\)个集合中,状态有\(165\)种,再加一个状态记录糊脸上的期望,也就是\(166\)个状态. 直接矩乘优化,那么单次的复杂度就是\(…
[UOJ#422][集训队作业2018]小Z的礼物(min-max容斥,轮廓线dp) 题面 UOJ 题解 毒瘤xzy,怎么能搬这种题当做WC模拟题QwQ 一开始开错题了,根本就不会做. 后来发现是每次任意覆盖相邻的两个,那么很明显就可以套\(min-max\)容斥. 要求的就是\(max(All)\),而每个集合的\(min\)是很好求的. 如果直接暴力枚举集合复杂度就是\(2^{cnt}cnt\). 仔细想想每个子集我们要知道的是什么,只需要知道子集大小来确定前面的容斥系数,还需要知道覆盖子集…
[UOJ#275]组合数问题(卢卡斯定理,动态规划) 题面 UOJ 题解 数据范围很大,并且涉及的是求值,没法用矩阵乘法考虑. 发现\(k\)的限制是,\(k\)是一个质数,那么在大组合数模小质数的情况下可以考虑使用卢卡斯定理. 卢卡斯定理写出来是\(Lucas(n,m)=Lucas(n/K,m/K)*Lucas(n\%K,m\%K)\) 显然只要有任何一个\(Lucas(n\%K,m\%K)=C_{n\%K}^{m\%K}\)是\(K\)的倍数那么当前数就会是\(K\)的倍数.因为\(K\)是…
[BZOJ4903][UOJ#300]吉夫特(卢卡斯定理,动态规划) 题面 UOJ BZOJ:给的UOJ的链接...... 题解 首先模的质数更小了,直接给定了\(2\).当然是卢卡斯定理了啊. 考虑一个组合数在什么情况下会是一个奇数.\(Lucas(n,m)\equiv Lucas(n/2,m/2)*Lucas(n\%2,m\%2)\).后面这个东西一共只有\(4\)种取值,我们大力讨论一下:\(C_{0}^0=1,C_{0}^1=0,C_1^0=1,C_1^1=1\).既然是一个奇数,证明\…
[UOJ#67]新年的毒瘤(Tarjan) 题面 UOJ 题解 一棵\(n\)个节点的树显然有\(n-1\)条边,在本题中意味着删去一个点之后还剩下\(n-2\)条边.那么找到所有度数为\(m-(n-2)\)的点就好了.但是因为是一棵树,所以联通,所以割点不是答案. #include<iostream> #include<cstdio> using namespace std; #define ll long long #define MAX 100100 inline int r…
[UOJ#188]Sanrd(min_25筛) 题面 UOJ 题解 今天菊开讲的题目.(千古神犇陈菊开,扑通扑通跪下来) 题目要求的就是所有数的次大质因子的和. 这个部分和\(min\_25\)筛中枚举最小值因子有异曲同工之妙. min_25筛什么的戳这里 并且这题并没有积性函数. 所以我们先筛出质数个数. 然后考虑如何计算答案\(S(n,1)\) 首先看初值,假设当前计算的是\(S(x,y)\) 表示的是\([1,x]\)中,所有最小质因子大于等于\(Prime_y\)的贡献 所有质数的贡献显…
[BZOJ3052][UOJ#58][WC2013]糖果公园(树上莫队) 题面 UOJ 洛谷 Candyland 有一座糖果公园,公园里不仅有美丽的风景.好玩的游乐项目,还有许多免费糖果的发放点,这引来了许多贪吃的小朋友来糖果公园游玩. 糖果公园的结构十分奇特,它由 n 个游览点构成,每个游览点都有一个糖果发放处,我们可以依次将游览点编号为 1 至 n.有 n – 1 条 双向道路 连接着这些游览点,并且整个糖果公园都是 连通的 ,即从任何一个游览点出发都可以通过这些道路到达公园里的所有其它游览…
[UOJ#79]一般图最大匹配(带花树) 题面 UOJ 题解 带花树模板题 关于带花树的详细内容 #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<algorithm> #include<set> #include<map> #include<vector>…
#103. [APIO2014]Palindromes 统计 描述 提交 自定义测试 给你一个由小写拉丁字母组成的字符串 ss.我们定义 ss 的一个子串的存在值为这个子串在 ss 中出现的次数乘以这个子串的长度. 对于给你的这个字符串 ss,求所有回文子串中的最大存在值. 输入格式 一行,一个由小写拉丁字母(a~z)组成的非空字符串 ss. 输出格式 输出一个整数,表示所有回文子串中的最大存在值. 样例一 input abacaba output 7 explanation 用 ∣s∣∣s∣ …
[UOJ#51][UR #4]元旦三侠的游戏(博弈论) 题面 UOJ 题解 考虑暴力,\(sg[a][b]\)记录\(sg\)函数值,显然可以从\(sg[a+1][b]\)和\(sg[a][b+1]\)推过来. 发现可以从\(sg[a][b]\)推到\(sg[a][b+1]\)的值很少,所以可以直接把这些值全部提前计算出来,这部分大概有\(\sqrt n\)个,剩下的可以推到\(sg[a+1][b]\)而不能推到\(sg[a][b+1]\)的位置可以通过\(a\)以及最大的满足\(x^b\le…
[UOJ#50][UR #3]链式反应(分治FFT,动态规划) 题面 UOJ 题解 首先把题目意思捋一捋,大概就是有\(n\)个节点的一棵树,父亲的编号大于儿子. 满足一个点的儿子有\(2+c\)个,其中\(c\in A\),且\(c\)个儿子是叶子,另外\(2\)个存在子树,且两种点的链接的边是不同的,求方案数. 那么就考虑一个暴力\(dp\),设\(f[i]\)表示有\(i\)个节点的树的个数. 那么枚举它两个有子树的子树大小,然后把编号给取出来,得到: \[f[i]=\frac{1}{2}…
[UOJ#310][UNR#2]黎明前的巧克力(FWT) 题面 UOJ 题解 把问题转化一下,变成有多少个异或和为\(0\)的集合,然后这个集合任意拆分就是答案,所以对于一个大小为\(s\)的集合,其贡献是\(2^s\). 于是我们可以弄出若干个\((1+2x^{a_i})\)这样子的多项式,然后异或卷积把它们卷起来就是答案. 根据\(FWT\)异或卷积的理论,如果\(i\)位置有一个\(1\),那么\(FWT\)之后对于\(j\)位置的贡献是\(-1^{pop\_count(i\&j)}\).…
[UOJ#242][UR#16]破坏蛋糕(计算几何) 题面 UOJ 题解 为了方便,我们假定最后一条直线是从上往下穿过来的,比如说把它当成坐标系的\(y\)轴. 于是我们可以处理出所有交点,然后把它们从上往下排序. 相邻的两个点就构成了一个相交的平面(可以认为正无穷和负无穷位置还有一个点) 那么,这个区间是有限的,当且仅当过这个两点的直线在左侧都还能找到一个交点,在右侧也还能找到一个交点. 于是考虑怎么找交点,两侧基本等价,所以拆开考虑,比如考虑右侧. 我们从上往下依次扫每一个过每一个交点的直线…
[UOJ#308][UNR#2]UOJ拯救计划 题面 UOJ 题解 如果模数很奇怪,我们可以插值一下,设\(f[i]\)表示用了\(i\)种颜色的方案数. 然而模\(6\)这个东西很有意思,\(6=2*3\),所以我们只需要考虑其模\(2\)和模\(3\)的结果了. 而最终答案的贡献是\(\sum_{i=1}^k A_{k}^i f[i]\),当\(i\ge 3\)的时候\(6|A_k^i\),所以我们只需要知道\(f[0],f[1],f[2]\)的值. \(f[0]\)的值?当然是\(0\)啊…
[UOJ#390][UNR#3]百鸽笼(动态规划,容斥) 题面 UOJ 题解 发现这就是题解里说的:"火山喷发概率问题"(大雾 考虑如果是暴力的话,你需要记录下当前每一个位置的鸽笼数量,因为概率会随着你空的鸽笼的数量而变化. 我们可以把这个问题转变为给一个长度为\(N\)的序列填数的问题. 直接算似乎不是很好算(因为直接算是要钦定在最后,那么其他的东西放满之后每个位置被选择的概率会被改变),我们把最后一个被填满的恰好是\(i\),变成至少有一个集合\(S\)在\(i\)后面被填满. 因…
[UOJ#389][UNR#3]白鸽(欧拉回路,费用流) 题面 UOJ 题解 首先第一问就是判断是否存在一条合法的欧拉回路,这个拿度数和连通性判断一下就行了. 第二问判断转的圈数,显然我们只需要考虑顺时针过一条从源点出发的射线的次数减去逆时针过的次数就好了. 于是我们就要在欧拉回路合法的基础上算第二问. 首先如果欧拉回路合法,那么每个点的入度要等于出度,这个东西有点类似上下界网络流,即强制了每个点的度数的上下界.我们可以类似上下界网络流,先给每条边强行定向,对于入度出度差不为令的点,分别和源点和…
[UOJ#388][UNR#3]配对树(线段树,dsu on tree) 题面 UOJ 题解 考虑一个固定区间怎么计算答案,把这些点搞下来建树,然后\(dp\),不难发现一个点如果子树内能够匹配的话就一定会匹配完,所以\(dp\)可以做到线性. 那么根据上面的\(dp\)方式,一条边会被匹配到,当且仅当把这条边删掉之后,两个连通块内分别有奇数个目标点.那么如果我们考虑枚举每一条边,然后把子树内的点给标记一下,于是变成了在原序列上求有多少个偶数区间满足有偶数个点被标记,这个问题可以做一个前缀和,把…
[UOJ#386][UNR#3]鸽子固定器(贪心) 题面 UOJ 题解 一个不难想到的暴力做法是把东西按照\(s\)排序,这样子我们枚举极大值和极小值,那么我们选择的一定是这一段之间\(v\)最大的那\(m\)个东西. 考虑优化这个过程,我们枚举右端点,左端点向左移动,每次插入一个元素,用堆来维护选择的过程.这样子复杂度可以做到\(O(n^2logn)\). 考虑继续优化这个过程,首先如果右端点一旦被弹出堆这个过程就可以终止了,这个很显然. 通过这个过程,我们也可以明白如果选择的个数不超过\(m…
[UOJ#82][UR #7]水题生成器(贪心) 题面 UOJ 题解 把\(n!\)的所有约数搜出来,这个个数不会很多. 然后从大往小能选则选就好了. #include<iostream> #include<cstdio> #include<algorithm> #include<vector> using namespace std; #define ll long long int n;ll m; vector<ll> ys; int p[2…
[UOJ#76][UR #6]懒癌(动态规划) 题面 UOJ 题解 神....神仙题. 先考虑如果是完全图怎么做... 因为是完全图,所以是对称的,所以我们只考虑一个有懒癌的人的心路历程. 如果只有一只狗有懒癌:第一天,看了看,似乎其他的狗都没有,但是村子里至少有一只狗有,然后就确定了. 如果有两只狗:第一天,看了看,有一只别的狗有懒癌,不确定:第二天,昨天有懒癌的那只狗还活着,证明他不能确定,所以他还看到了别的狗有懒癌,而除了自己的未知和那个有懒癌的人,别的人的狗都没有懒癌,所以自己的狗有懒癌…
[UOJ#75][UR #6]智商锁(矩阵树定理,随机) 题面 UOJ 题解 这种题我哪里做得来啊[惊恐],,, 题解做法:随机\(1000\)个点数为\(12\)的无向图,矩阵树定理算出它的生成树个数,然后找到四张图不拼接直接放在一起,也就是找到四个图,假设其生成树个数是\(f(G)\),那么就找到\(f(G_1)f(G_2)f(G_3)f(G_4)\equiv k\),然后预处理两两的乘积,丢到哈希表/\(\text{map}\)里,枚举另外一半直接查... 无向图的生成方式是每条边出现的概…
[UOJ#74][UR #6]破解密码 题面 UOJ 题解 发现这个过程是一个字符串哈希的过程. 把第一位单独拿出来考虑,假设这个串是\(p+S\),旋转后变成了\(S+p\). 其哈希值分别是:\(p*26^{|S|}+hash(S)\)和\(hash(S)*26+p\). 那么\(h[i]*26-h[i+1]=p*26^{n}-p\) 那么这里显然可以直接把\(p\)给解出来. 这样子就可以还原出每一位了. 注意到特殊情况:\(26^n-1\)没有逆,此时无法直接计算. 然而注意到\(26^…