拉普拉斯(Laplace)分布】的更多相关文章

Laplace分布的概率密度函数的形式是这样的: $p(x) = \frac{1}{2 \lambda} e^{-\frac{\vert x –\mu \vert}{\lambda}}$   一般$\mu$的取值为0,所以形式如下: $p(x) = \frac{1}{2 \lambda} e^{-\frac{\vert x \vert}{\lambda}}$ 它是由两个指数函数组成的,所以又叫做双指数函数分布(double exponential distribution) 均值和方差 均值的求…
Laplace(拉普拉斯)先验与L1正则化 在之前的一篇博客中L1正则化及其推导推导证明了L1正则化是如何使参数稀疏化人,并且提到过L1正则化如果从贝叶斯的观点看来是Laplace先验,事实上如果从贝叶斯的观点,所有的正则化都是来自于对参数分布的先验.现在来看一下为什么Laplace先验会导出L1正则化,也顺便证明Gauss(高斯)先验会导出L2正则化. 最大似然估计 很多人对最大似然估计不明白,用最简单的线性回归的例子来说:如果有数据集\((X, Y)\),并且\(Y\)是有白噪声(就是与测量…
1. 简单列子: 一个损失函数L与参数x的关系表示为: 则 加上L2正则化,新的损失函数L为:(蓝线) 最优点在黄点处,x的绝对值减少了,但依然非零. 如果加上L1正则化,新的损失函数L为:(粉线) 最优点为红点,变为0,L1正则化让参数的最优值变为0,更稀疏. L1在江湖上人称Lasso,L2人称Ridge. 两种正则化,能不能将最优的参数变为0,取决于最原始的损失函数在0点处的导数,如果原始损失函数在0点处的导数不为0,则加上L2正则化之后(+2Cx),导数依然不为0.而加上L1正则化(导数…
最小二乘法可以从Cost/Loss function角度去想,这是统计(机器)学习里面一个重要概念,一般建立模型就是让loss function最小,而最小二乘法可以认为是 loss function = (y_hat -y )^2的一个特例,类似的像各位说的还可以用各种距离度量来作为loss function而不仅仅是欧氏距离.所以loss function可以说是一种更一般化的说法. 最大似然估计是从概率角度来想这个问题,直观理解,似然函数在给定参数的条件下就是观测到一组数据realizat…
100道AI基础面试题 1.协方差和相关性有什么区别? 解析: 相关性是协方差的标准化格式.协方差本身很难做比较.例如:如果我们计算工资($)和年龄(岁)的协方差,因为这两个变量有不同的度量,所以我们会得到不能做比较的不同的协方差. 为了解决这个问题,我们计算相关性来得到一个介于-1和1之间的值,就可以忽略它们各自不同的度量. 2.xgboost如何寻找最优特征?是有放回还是无放回的呢? 解析: xgboost在训练的过程中给出各个特征的增益评分,最大增益的特征会被选出来作为分裂依据, 从而记忆…
朴素贝叶斯 朴素贝叶斯方法是一组基于贝叶斯定理的监督学习算法,其"朴素"假设是:给定类别变量的每一对特征之间条件独立.贝叶斯定理描述了如下关系: 给定类别变量\(y\)以及属性值向量\(x_1\)至\(x_n\): \(P(y \mid x_1, \dots, x_n) = \frac{P(y) P(x_1, \dots x_n \mid y)} {P(x_1, \dots, x_n)}\) 依据朴素条件独立假设可得: \(P(x_i \mid y, x_1, \dots, x_{i-…
目录 概览 HighLights Camera Intrinsic Matrix 笔记 Intrinsic Matrix Task-Error - 不确定性任务下确界的计算 输出假设的Laplace分布 Geometric Baseline 基于纯几何学的参照方法 公式总结 概览 近日在阅读"MonoLoco: Monocular 3D Pedestrian Localization and Uncertainty Estimation"文献,旨在解决定位图像中行人位置(本质上只预测距…
本文首发自公众号:RAIS,期待你的关注. 前言 本系列文章为 <Deep Learning> 读书笔记,可以参看原书一起阅读,效果更佳. 概率论 机器学习中,往往需要大量处理不确定量,或者是随机量,这与我们传统所需要解决掉问题是大不一样的,因此我们在机器学习中往往很难给出一个百分百的预测或者判断,基于此种原因,较大的可能性往往就是所要达到的目标,概率论有用武之地了. 概念 离散型 概率质量函数:是一个数值,概率,\(0\leq P(x)\leq 1\): 边缘概率分布:\(P(X=x)=\s…
目录 1. 前言 2. BLUP方法 ABLUP GBLUP ssGBLUP RRBLUP 3. 贝叶斯方法 BayesA BayesB BayesC/Cπ/Dπ Bayesian Lasso 4. 机器学习 支持向量机 集成学习 深度学习 5. 其他模型 RKHS GWAS-assisted GS 非加性效应 多变量模型 多组学 6. 小结 参考资料 1. 前言 在介绍GS模型之前,我们有必要先来了解一下混合线性模型(Mixed Linear Model,MLM).混合线性模型是一种方差分量模…
中国农业大学等多家单位2017年合作发表在<遗传>杂志上的综述,笔记之. 作者中还有李宁院士,不胜唏嘘. 1.概述 GS的两大难题:基因组分型的成本,基因组育种值(genomic estimted breeding value, GEBV)的准确性. 基于个体的基因组估计育种值GEBV比传统基于系谱的估计育种值(estimted breeding value, EBV)准确性更高. GS实施示意图: 基于单点SNP标记的GEBV估计方法 一类基于估计等位基因效应来计算GEBV: ①最小二乘法…
作者:桂. 时间:2017-05-25  10:14:21 主要是<Speech enhancement: theory and practice>的读书笔记,全部内容可以点击这里. 书中代码:http://pan.baidu.com/s/1hsj4Wlu,提取密码:9dmi 前言 最近学习有一点体会,每一个学科的理论模型都提供了解决问题的思路,一个没有受过教育又迷信权威的头脑,难以从抽象的角度去认识.理解问题,自然科学传递了这样一套思维.例如之前的谱减法,就是具体问题具体分析;维纳滤波,表达…
本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模型(忘记了为什么看完<统计学习方法>第一章之后直接就跳去了第六章,好像是对"逻辑斯蒂"这个名字很感兴趣?...),对照<机器学习实战>写了几行代码敲了一个toy版本,当时觉得还是挺有意思的.我觉得这个模型很适合用来入门(但是必须注意这个模型有很多很多很多很多可以展开…
一.BFGS算法 算法思想如下: Step1   取初始点,初始正定矩阵,允许误差,令: Step2   计算: Step3   计算,使得 : Step4    令: Step5    如果,则取为近似最优解:否则转下一步: Step6    计算 ,, 令,转Step2. 优点: 1.不用直接计算Hessian矩阵: 2.通过迭代的方式用一个近似矩阵代替Hessian矩阵的逆矩阵. 缺点: 1.矩阵存储量为,因此维度很大时内存不可接受: 2.矩阵非稀疏会导致训练速度慢. 二.L-BFGS算法…
目录 一.引言 1.什么是.为什么需要深度学习 2.简单的机器学习算法对数据表示的依赖 3.深度学习的历史趋势 最早的人工神经网络:旨在模拟生物学习的计算模型 神经网络第二次浪潮:联结主义connectionism 神经网络的突破 二.线性代数 1. 标量.向量.矩阵和张量的一般表示方法 2. 矩阵和向量的特殊运算 3. 线性相关和生成子空间 I. 方程的解问题 II. 思路 III. 结论 IV.求解方式 4. 范数norm I. 定义和要求 II. 常用的\(L^2\)范数和平方\(L^2\…
概率论 不确定性 量化 频率 频率派 贝叶斯派 1.随机变量(random variable) 随机取不同值的变量,取值可以离散或者连续. 2.概率分布(probability distribution) 描述随机变量每个取值的可能性大小. 离散:概率质量函数(probability mass function,简称PMF) 连续:概率密度函数(probability density function,简称PDF) 联合概率分布(joint probability distribution),多…
这里讨论机器学习中L1正则和L2正则的区别. 在线性回归中我们最终的loss function如下: 那么如果我们为w增加一个高斯先验,假设这个先验分布是协方差为 的零均值高斯先验.我们在进行最大似然: 这个东西不就是我们说的加了L2正则的loss function吗? 同理我们如果为w加上拉普拉斯先验,就可以求出最后的loss function也就是我们平时说的加了L1正则: 因为拉普拉斯的分布相比高斯要更陡峭,它们的分布类似下图,红色表示拉普拉斯,黑色表示高斯 可以看出拉普拉斯的小w的数目要…
 『教程』L0.L1与L2范数 一.L0范数.L1范数.参数稀疏 L0范数是指向量中非0的元素的个数.如果我们用L0范数来规则化一个参数矩阵W的话,就是希望W的大部分元素都是0,换句话说,让参数W是稀疏的. 既然L0可以实现稀疏,为什么不用L0,而要用L1呢?一是因为L0范数很难优化求解(NP难问题),二是L1范数是L0范数的最优凸近似,而且它比L0范数要容易优化求解.所以大家才把目光和万千宠爱转于L1范数. 总结:L1范数和L0范数可以实现稀疏,L1因具有比L0更好的优化求解特性而被广泛应用.…
TensorFlow学习笔记5-概率与信息论 本笔记内容为"概率与信息论的基础知识".内容主要参考<Deep Learning>中文版. \(X\)表示训练集的设计矩阵,其大小为m行n列,m表示训练集的大小(size),n表示特征的个数: \(W\)表示权重矩阵,其大小是n行k列,n为输入特征的个数,k为输出(特征)的个数: \(\boldsymbol{y}\)表示训练集对应标签,其大小为m行,m表示训练集的大小(size): \(\boldsymbol{y'}\)表示将测…
1) alpha : float, optional Constant that multiplies the penalty terms. Defaults to 1.0. See the notes for the exact mathematical meaning of this parameter.``alpha = 0`` is equivalent to an ordinary least square, solved by the LinearRegression object.…
CVPR2020论文点评: AdderNet(加法网络) 论文原文链接:https://arxiv.org/pdf/1912.13200.pdf 源码链接:https://github.com/huawei-noah/AdderNet 简要 与简单的加法运算相比,乘法运算具有更高的计算复杂度.深度神经网络中广泛使用的卷积正好是来度量输入特征和卷积滤波器之间的相似性,这涉及浮点值之间的大量乘法.现在作者提出了加法网络(AdderNets)来交换深度神经网络中的这些大规模乘法,特别是卷积神经网络(C…
ICLR 2022: Scene Transformer: A unified architecture for predicting future trajectories of multiple agents Type: ICLR Year: 2022 组织: waymo 参考与前言 openreivew https://openreview.net/forum?id=Wm3EA5OlHsG pdf Scene Transformer: A unified architecture for…
[论文标题]Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering     (24th-IJCAI ) (Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015) ) [论文作者]Liping Jing, PengWa…
拉普拉斯分布的定义与基本性质 其分布函数为 分布函数图 其概率密度函数为 密度函数图 拉普拉斯分布与正太分布的比较 从图中可以直观的发现拉普拉斯分布跟正太分布很相似,但是拉普拉斯分布比正太分布有尖的峰和轻微的厚尾.…
作者:桂. 时间:2017-03-21  07:25:17 链接:http://www.cnblogs.com/xingshansi/p/6592599.html 声明:欢迎被转载,不过记得注明出处哦~ 前言 本文为曲线拟合与分布拟合系列的一部分,主要讲解混合拉普拉斯分布(Laplace Mixture Model,LMM).拉普拉斯也是常用的统计概率模型之一,网上关于混合高斯模型(GMM)的例子很多,而关于LMM实现的很少.其实混合模型都可以用EM算法推导,只是求闭式解的运算上略有差别,全文包…
之前那篇文章里提到,L1其实是加上服从拉普拉斯分布的先验,L2是加上服从高斯分布的先验: http://www.cnblogs.com/charlesblc/p/7977732.html 那么记住拉普拉斯的公式和高斯的公式: 拉普拉斯(Laplace) 高斯(Gaussian)分布…
高斯拉普拉斯(Laplace of Gaussian) kezunhai@gmail.com http://blog.csdn.net/kezunhai Laplace算子作为一种优秀的边缘检测算子,在边缘检测中得到了广泛的应用.该方法通过对图像求图像的二阶倒数的零交叉点来实现边缘的检测,公式表示如下: 由于Laplace算子是通过对图像进行微分操作实现边缘检测的,所以对离散点和噪声比较敏感.于是,首先对图像进行高斯卷积滤波进行降噪处理,再采用Laplace算子进行边缘检测,就可以提高算子对噪声…
作者:桂. 时间:2017-04-13  07:43:03 链接:http://www.cnblogs.com/xingshansi/p/6702188.html 声明:欢迎被转载,不过记得注明出处哦~ 前言 前面分析了非负矩阵分解(NMF)的应用,总觉得NMF与谱聚类(Spectral clustering)的思想很相似,打算分析对比一下.谱聚类更像是基于图(Graph)的思想,其中涉及到一个重要概念就是拉普拉斯矩阵(Laplace matrix),想着先梳理一下这个矩阵: 1)拉普拉斯矩阵基…
[摘要] Laplace算子作为边缘检测之一,和Sobel算子一样也是工程数学中常用的一种积分变换,属于空间锐化滤波操作.拉普拉斯算子(Laplace Operator)是n维欧几里德空间中的一个二阶微分算子,定义为梯度(▽f)的散度(▽·f).拉普拉斯算子也可以推广为定义在黎曼流形上的椭圆型算子,称为拉普拉斯-贝尔特拉米算子.(百度百科) [原理] 拉普拉斯算子是二阶微分线性算子,在图像边缘处理中,二阶微分的边缘定位能力更强,锐化效果更好,因此在进行图像边缘处理时,直接采用二阶微分算子而不使用…
背景:为什么要做平滑处理? 零概率问题,就是在计算实例的概率时,如果某个量x,在观察样本库(训练集)中没有出现过,会导致整个实例的概率结果是0.在文本分类的问题中,当一个词语没有在训练样本中出现,该词语调概率为0,使用连乘计算文本出现概率时也为0.这是不合理的,不能因为一个事件没有观察到就武断的认为该事件的概率是0. 拉普拉斯的理论支撑 为了解决零概率的问题,法国数学家拉普拉斯最早提出用加1的方法估计没有出现过的现象的概率,所以加法平滑也叫做拉普拉斯平滑. 假定训练样本很大时,每个分量x的计数加…
参考网址: 1. https://en.wikipedia.org/wiki/First-hitting-time_model 2. https://en.wikipedia.org/wiki/Laplace_transform Probability theory By abuse of language, this is referred to as the Laplace transform of the random variable X itself. Replacing s by −…