目标: 我们内部系统里记录的酒店名字是由很多人输入的,每个人输入的可能不完全一样,比如,‘成都凯宾斯基大酒店’, ‘凯宾斯基酒店’, ‘凯宾斯基’, 我们的初步想法是能不能把大量的记录归类,把很多相似的名字归成一类,然后自动给出一个建议的名字 向量化和建模: 大概的想法是,先找出一个相似性算法,然后在调用一种分类算法.相似性算法很多是基于vector的,怎么把中文转化成vector? 这个文章介绍了怎么处理中文 (sklearn: TfidfVectorizer 中文处理及一些使用参数) 聚类:…