hdu 5505(数论-gcd的应用)】的更多相关文章

GT and numbers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 1818    Accepted Submission(s): 490 Problem Description You are given two numbers N and M. Every step you can get a new N in the wa…
GCD and LCM HDU 4497 数论 题意 给你三个数x,y,z的最大公约数G和最小公倍数L,问你三个数字一共有几种可能.注意123和321算两种情况. 解题思路 L代表LCM,G代表GCD. \[ x=(p_1^{i_1})*(p_2^{i_2})*(p_3^{i_3})\dots \] \[ y=(p_1^{j_1})*(p_2^{j_2})*(p_3^{j_3})\dots \] \[ z=(p_1^{k_1})*(p_2^{k_2})*(p_3^{k_3})\dots \] \…
UVA.12716 GCD XOR (暴力枚举 数论GCD) 题意分析 题意比较简单,求[1,n]范围内的整数队a,b(a<=b)的个数,使得 gcd(a,b) = a XOR b. 前置技能 XOR的性质 GCD 由于题目只给出一个n,我们要求对数,能做的也始终暴力枚举a,b,这样就有n^2的复杂度,由于n很大,根本过不了. 于是我们就想用到其中一些性质,如XOR 与GCD,不妨假设 a xor b = c,并且根据题意还知道, gcd(a,b) = c,也就说明c一定是a的因子,所以在枚举的…
Big Number 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1722 ——每天在线,欢迎留言谈论. 题目大意: 给你两个数 n1,n2 . 然后你有一块蛋糕,提前切好,使得不管来 n1 还是 n2 个人都能够当场平均分配. 求 “提前切好” 的最小蛋糕块数. 知识点: (请无视)公式:N = a + b + gcd(a, b) : 思路: (勿无视)先份成p块,然后再拼到一起,再从原来开始的地方,将蛋糕再分成q份,中间肯定会出现完全重合的块…
GCD?LCM! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 316    Accepted Submission(s): 200 Output T lines, find S(n) mod 258280327. Sample Input 8 1 2 3 4 10 100 233 11037 Sample Output 1 5 1…
A frog has just learned some number theory, and can't wait to show his ability to his girlfriend. Now the frog is sitting on a grid map of infinite rows and columns. Rows are numbered 1,2,⋯from the bottom, so are the columns. At first the frog is sit…
题目描述: Given two positive integers a and b,find suitable X and Y to meet the conditions: X+Y=a Least Common Multiple (X, Y) =b Input Input includes multiple sets of test data.Each test data occupies one line,including two positive integers a(1≤a≤2*10^…
传送门 •题意 一直整数$a,b$,有 $\left\{\begin{matrix}x+y=a\\ LCM(x*y)=b \end{matrix}\right.$ 求$x,y$ •思路 解题重点:若$gcd(p,q)=1$,则$gcd(p+q,pq)=1$ 设$gcd(x,y)=g$,令$p=\frac{x}{g},q=\frac{y}{g}$,$p,q$互素 则$\left\{\begin{matrix}x+y=p*g+q*g=(p+q)g=a\\ LCM(x,y)=\frac{xy}{g}=…
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4497 解题思路:将满足条件的一组x,z,y都除以G,得到x‘,y',z',满足条件gcd(x',y',x') = 1,同时lcm(x',y',x') = G/L. 特判,当G%L != 0 时,无解. 然后素数分解G/L,假设G/L = p1^t1 * p2^t2 *````* pn^tn. 满足上面条件的x,y,z一定为这样的形式. x' = p1^i1 * p2^i2 *```* pn^in.…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5869 问你l~r之间的连续序列的gcd种类. 首先固定右端点,预处理gcd不同尽量靠右的位置(此时gcd种类不超过loga[i]种). 预处理gcd如下代码,感觉真的有点巧妙... ; i <= n; ++i) { int x = a[i], y = i; ; j < ans[i - ].size(); ++j) { ][j].first); if(gcd != x) { ans[i].push_…