这一章应该算是比价了理论的一章,我有些概率论基础,不过起初有些地方还是没看多大懂.其中有些公式的定义和模型误差的推导应该还是很眼熟的,就是之前在概率论课上提过的,不过有些模糊了,当时课上学得比较浅. Day2 第二章 模型评估与选择 2.1 经验误差与过拟合 通常我们把分类错误的样本数占样本总数的比例称为“错误率(error rate)”,即错误率E=a/m,m个样本中a个错误,1-a/m称为“精度(accuracy)”,我们把学习器的实际输出与样本的真实输出之间的差异称为“误差(error)”…