机器学习(3):支持向量机(SVM)】的更多相关文章

在上两节中,我们讲解了机器学习的决策树和k-近邻算法,本节我们讲解另外一种分类算法:支持向量机SVM. SVM是迄今为止最好使用的分类器之一,它可以不加修改即可直接使用,从而得到低错误率的结果. [案例背景] 从前有两个地主,他们都是占山为王的一方霸主.本来各自吃饱自己的饭万事无忧,可是人心不知足蛇吞象啊,自己总是都想占对方的一亩三分地,冲突争吵从来都没有停歇过.当时的环境就是谁狠这土地就归谁,但是我们现在想从科学的角度来分析,如何让他们的地盘均分,画条边界线,从此互不干扰呢? [演示代码] i…
支持向量机—SVM原理代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9596898.html 1. 解决什么问题? 最基本的应用是数据分类,特别是对于非线性不可分数据集.支持向量机不仅能对非线性可分数据集进行分类,对于非线性不可分数据集的也可以分类 (我认为这才是支持向量机的真正魅力所在,因为现实场景中,样本数据往往是线性不可分的). 现实场景一 :样本数据大部分是线性可分的,但是只是在样本中含有少量…
关于支持向量机SVM,这里也只是简单地作个要点梳理,尤其是要注意的是SVM的SMO优化算法.核函数的选择以及参数调整.在此不作过多阐述,单从应用层面来讲,重点在于如何使用libsvm,但对其原理算法要理解. SVM理论推导是有些复杂的,关键是怎么把目标函数在约束条件下,最终转化为一个凸二次优化问题.在这里推荐一个写的比较经典的文章,july的博客里的一篇文章<支持向量机通俗导论(理解SVM的三层境界)>,博文链接:http://blog.csdn.net/v_july_v/article/de…
支持向量机SVM(Support Vector Machine) 关注公众号"轻松学编程"了解更多. [关键词]支持向量,最大几何间隔,拉格朗日乘子法 一.支持向量机的原理 Support Vector Machine.支持向量机,其含义是通过支持向量运算的分类器.其中"机"的意思是机器,可以理解为分类器. 那么什么是支持向量呢?在求解的过程中,会发现只根据部分数据就可以确定分类器,这些数据称为支持向量. 见下图,在一个二维环境中,其中点R,S,G点和其它靠近中间黑…
一.什么是支撑向量机SVM (Support Vector Machine) SVM(Support Vector Machine)指的是支持向量机,是常见的一种判别方法.在机器学习领域,是一个有监督的学习模型,通常用来进行模式识别.分类以及回归分析. Vapnik等人在多年研究统计学习理论基础上对线性分类器提出了另一种设计最佳准则.其原理也从线性可分说起,然后扩展到线性不可分的情况.甚至扩展到使用非线性函数中去,这种分类器被称为支持向量机(Support Vector Machine,简称SV…
一.概念和背景 SVM:Support Vector Machine 支持向量机. 最早是由Vladimir N. Vapnik和Alexey Ya. Chervonenkis在1963年提出的. 目前的版本(soft margin)是由Corinna Cortes和Vapnik在1993年提出,并在1995年发表. 在深度学习(2012)出现之前,SVM被认为是机器学习中近十几年来最成功,表现最好的算法. 机器学习的一般框架: 训练集--->提取特征向量--->结合一定的算法(决策树.KNN…
SVM,称为支持向量机,曾经一度是应用最广泛的模型,它有很好的数学基础和理论基础,但是它的数学基础却比以前讲过的那些学习模型复杂很多,我一直认为它是最难推导,比神经网络的BP算法还要难懂,要想完全懂这个算法,要有很深的数学基础和优化理论,本文也只是大概讨论一下.本文中所有的代码都在我的github. 目录 硬间隔SVM推导 间隔 对偶 SMO 软间隔SVM 核函数 总结 硬间隔SVM推导 如果现在我们需要对一堆数据进行二分类处理,并且这些数据都是线性可分的(一条直线就能将数据区分开),那么你会如…
支持向量机通过某非线性变换 φ( x) ,将输入空间映射到高维特征空间.特征空间的维数可能非常高.如果支持向量机的求解只用到内积运算,而在低维输入空间又存在某个函数 K(x, x′) ,它恰好等于在高维空间中这个内积,即K( x, x′) =<φ( x) ⋅φ( x′) > .那么支持向量机就不用计算复杂的非线性变换,而由这个函数 K(x, x′) 直接得到非线性变换的内积,使大大简化了计算.这样的函数 K(x, x′) 称为核函数 核函数包括线性核函数.多项式核函数.高斯核函数等,其中高斯核…
基于最大间隔分隔数据 import matplotlib import matplotlib.pyplot as plt from numpy import * xcord0 = [] ycord0 = [] xcord1 = [] ycord1 = [] markers =[] colors =[] fr = open('F:\\machinelearninginaction\\Ch06\\testSet.txt')#this file was generated by 2normalGen.…
二.代码实现 import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression import warnings warnings.filterwarnings('ignore') data = datasets.load_breast_cancer() x =…