关键词句和文本集每篇文章相关度计算:假设语料库中有几万篇文章,每篇文章的长度不一,你任意输入关键词或句子,通过代码以tf-idf值为准检索出来相似度高的文章. 1.TF-IDF概述 TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度.字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降.TF-IDF加权的各种形式常被搜索引擎应用,作为文件与用户查询之间相关程度的度量或评级. TFIDF的主要思想是:如果某个词或短…
主要知识点: TF/IDF算法介绍 查看es计算_source的过程及各词条的分数 查看一个document是如何被匹配到的         一.算法介绍 relevance score算法,简单来说,就是计算出,一个索引中的文本,与搜索文本,他们之间的关联匹配程度.Elasticsearch使用的是 term frequency/inverse document frequency算法,简称为TF/IDF算法     1.Term frequency 搜索文本中的各个词条在field文本中出现…
相关度评分 TF&IDF算法 Elasticsearch的相关度评分(relevance score)算法采用的是term frequency/inverse document frequency算法,简称为TF/IDF算法. 算法介绍: relevance score算法:简单来说就是,就是计算出一个索引中的文本,与搜索文本,它们之间的关联匹配程度. TF/IDF算法:分为两个部分,IF 和IDF Term Frequency(TF): 搜索文本中的各个词条在field文本中出现了多少次,出现…
tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四句话,每句表示一个文档 copus=['我正在学习计算机','它正在吃饭','我的书还在你那儿','今天不上班'] 由于中文需要分词,jieba分词是python里面比较好用的分词工具,所以选用jieba分词,文末是jieba的链接.首先对文档进行分词: import jieba copus=['我…
tf–idf算法解释 tf–idf, 是term frequency–inverse document frequency的缩写,它通常用来衡量一个词对在一个语料库中对它所在的文档有多重要,常用在信息检索和文本挖掘中. 一个很自然的想法是在一篇文档中词频越高的词对这篇文档越重要,但同时如果这个词又在非常多的文档中出现的话可能就是很普通的词,没有多少信息,对所在文档贡献不大,例如‘的’这种停用词.所以要综合一个词在所在文档出现次数以及有多少篇文档包含这个词,如果一个词在所在文档出现次数很多同时整个…
tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四句话,每句表示一个文档 copus=['我正在学习计算机','它正在吃饭','我的书还在你那儿','今天不上班'] 由于中文需要分词,jieba分词是python里面比较好用的分词工具,所以选用jieba分词,文末是jieba的链接.首先对文档进行分词: import jieba copus=['我…
主要知识点: boolean model IF/IDF vector space model     一.boolean model     在es做各种搜索进行打分排序时,会先用boolean model 进行初步的筛选,boolean model类似and这种逻辑操作符,先过滤出包含指定term的doc.must/must not/should(过滤.包含.不包含 .可能包含)这几种情况,这一步不会对各个doc进行打分,只分过滤,为下一步的IF/IDF算法筛选数据.     二.TF/IDF…
relevance score算法,简单来说,就是计算出,一个索引中的文本,与搜索文本,他们之间的关联匹配程度 Elasticsearch使用的是 term frequency/inverse document frequency算法,简称为TF/IDF算法 Term frequency(TF):搜索文本中的各个词条在field文本中出现了多少次,出现次数越多,就越相关 Inverse document frequency(IDF):搜索文本中的各个词条在整个索引的所有文档中出现了多少次,出现的…
TF/IDF(term frequency/inverse document frequency) 的概念被公认为信息检索中最重要的发明. 一. TF/IDF描述单个term与特定document的相关性 TF(Term Frequency): 表示一个term与某个document的相关性.公式为: 这个term在document中出现的次数除以该document中所有term出现的总次数. IDF(Inverse Document Frequency)表示一个term表示document的主…
上一篇中,主要说的就是词袋模型.回顾一下,在进行文本分类之前,我们需要把待分类文本先用词袋模型进行文本表示.首先是将训练集中的所有单词经过去停用词之后组合成一个词袋,或者叫做字典,实际上一个维度很大的向量.这样每个文本在分词之后,就可以根据我们之前得到的词袋,构造成一个向量,词袋中有多少个词,那这个向量就是多少维度的了.然后就把这些向量交给计算机去计算,而不再需要文本啦.而向量中的数字表示的是每个词所代表的权重.代表这个词对文本类型的影响程度. 在这个过程中我们需要解决两个问题:1.如何计算出适…
https://blog.csdn.net/class_brick/article/details/79135909 概念 TF-IDF(term frequency–inverse document frequency)是一种用于资讯检索与资讯探勘的常用加权技术.TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度.字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降.TF-IDF加权的各种形式常被搜寻引擎应用,…
    一.TF/IDF描述单个term与特定document的相关性TF(Term Frequency): 表示一个term与某个document的相关性. 公式为这个term在document中出现的次数除以该document中所有term出现的总次数. IDF(Inverse Document Frequency)表示一个term表示document的主题的权重大小.主要是通过包含了该term的docuement的数量和docuement set的总数量来比较的.出现的次数越多,权重越小.…
FROM:http://blog.csdn.net/pennyliang/article/details/1231028 我们已经谈过了如何自动下载网页.如何建立索引.如何衡量网页的质量(Page Rank).我们今天谈谈如何确定一个网页和某个查询的相关性.了解了这四个方面,一个有一定编程基础的读者应该可以写一个简单的搜索引擎了,比如为您所在的学校或院系建立一个小的搜索引擎.] 我们还是看上回的例子,查找关于“原子能的应用”的网页.我们第一步是在索引中找到包含这三个词的网页(详见关于布尔运算的系…
在文本挖掘预处理之向量化与Hash Trick中我们讲到在文本挖掘的预处理中,向量化之后一般都伴随着TF-IDF的处理,那么什么是TF-IDF,为什么一般我们要加这一步预处理呢?这里就对TF-IDF的原理做一个总结. 1. 文本向量化特征的不足 在将文本分词并向量化后,我们可以得到词汇表中每个词在各个文本中形成的词向量,比如在文本挖掘预处理之向量化与Hash Trick这篇文章中,我们将下面4个短文本做了词频统计: corpus=["I come to China to travel"…
1. 使用函数df(field,keyword) 和idf(field,keyword). http://118.85.207.11:11100/solr/mobile/select?q={!func}product%28idf%28title,%E9%97%AE%E9%A2%98%29,tf%28title,%E9%97%AE%E9%A2%98%29%29&fl=title,score,product%28idf%28title,%E9%97%AE%E9%A2%98%29,tf%28title…
在相似文本的推荐中,可以用TF-IDF来衡量文章之间的相似性. 一.TF(Term Frequency) TF的含义很明显,就是词出现的频率. 公式: 在算文本相似性的时候,可以采用这个思路,如果两篇文章高频词很相似,那么就可以认定两片文章很相似. 二.IDF(Inverse Document Frequency) IDF为逆文档频率. 公式: 一个词越在语料库出现的次数越多,则权重应该越不重要:反之越少则应该越重要. 比如,如果要检索两个文档的相似度,通过统计权重大的词来进行匹配更为合理,如果…
众所周知,很多社区都是有内容审核机制的,除了第一次发布,后续的修改也需要审核,最粗暴的方式当然是从头再看一遍,但是编辑肯定想弄死你,显然这样效率比较低,比如就改了一个错别字,再看几遍可能也看不出来,所以如果能知道每次都修改了些什么,就像git的diff一样,那就方便很多了,本文就来简单实现一个. 求最长公共子序列 想要知道两段文本有什么差异,我们可以先求出它们的公共内容,剩下的就是被删除或新增的.在算法中,这是一道经典的题目,力扣上就有这道题1143. 最长公共子序列,题目描述如下: 这种求最值…
1. SIFT算法中一些符号的说明 $I(x,y)$表示原图像. $G(x,y,\sigma)$表示高斯滤波器,其中$G(x,y,\sigma) = \frac{1}{2\pi\sigma^2}exp(-(x^2+y^2)/2\sigma^2)$. $L(x,y,\sigma)$表示由一个高斯滤波器与原图像卷积而生成的图像,即$L(x,y,\sigma) = G(x,y,\sigma)\otimes I(x,y)$.一系列的$\sigma_i$,则可以生成一系列的$L(x,y,\sigma_i)…
了使用正则表达式,需要把 RegEx 类引入程序.大家可以在 System.Text.RegularExpression 名字域中找到这种类.一旦把这种类导入了程序,就需要决定想要用 RegEx 类来做什么事情了. 如果想要进行匹配,就需要使用 Match类. 如果打算做替换,则不需要 Match 类了.取而代之的是要用到 RegEx 类的 Replace 方法. 5.1.使用正则表达式 Regex reg = new Regex("quick"); string str1 = &qu…
将query改成filter,lucene中有个QueryWrapperFilter性能比较差,所以基本上都须要自己写filter.包含TermFilter,ExactPhraseFilter,ConjunctionFilter,DisjunctionFilter. 这几天验证下来,还是or改善最明显,4个termfilter,4508个返回结果,在我本机上性能提高1/3.ExactPhraseFilter也有小幅提升(5%-10%). 最令人不解的是and,原来以为跟结果数和子查询数相关,但几…
Knuth-Morris-Pratt Algorithm 当初写这个博客之后一年多,再次看发现当初并不是完全弄明白了.这里为了“避免重复制造轮子”,引用大神博客. http://blog.csdn.net/v_july_v/article/details/7041827 特殊的 next[ ] 数组 next数组相当于“最大长度值”(前缀后缀的最大公共元素长度) 整体向右移动一位,然后初始值赋为-1 求next数组 //优化过后的next 数组求法 void GetNextval(char* p…
CORDIC(Coordinate Rotation Digital Computer)坐标旋转数字计算机,是数学与计算机技术交叉产生的一种机器算法,用于解决计算机的数学计算问题.发展到现在,CORDIC算法及其扩展算法大致有三种计算模式:圆周旋转模式.线性旋转模式和双曲线旋转模式,分别用来实现不同的数学运算. 本文介绍圆周旋转模式下的CORDIC算法原理及实现过程,另两种模式将分期介绍. 简单来讲,CORDIC利用近似逼近的思想,将计算机中三角函数.开根号.求对数等复杂运算,转化为简单的加减和…
经过自己一段时间的学习,已经略有收获了!在整个过程的进行中,在我逐渐通过看书,看案例,做题积累了一些编程python的经验以后,我发现我渐渐爱上了python,爱上了编程! 接下来,当然是又一些有趣的实验案例:文本进度条的制作和π的计算! **文本进度条 相信大家都玩过游戏吧,面对加载的游戏数据,我们可能会遇到这样一种情况:网络卡顿的时候,进度条缓缓移动却迟迟不能加载完全,实在是消磨人们的耐心(狗头) 在我们的印象中,进度条应该是一个条状方块,随着时间的推移慢慢向前移动,直至数据加载完成! 那么…
转载自 Linux中通过/proc/stat等文件计算Cpu使用率 http://www.blogjava.net/fjzag/articles/317773.html proc文件系统 /proc文件系统是一个伪文件系统,它只存在内存当中,而不占用外存空间.它以文件系统的方式为内核与进程提供通信的接口.用户和应用程序可以通过/proc得到系统的信息,并可以改变内核的某些参数.由于系统的信息,如进程,是动态改变的,所以用户或应用程序读取/proc目录中的文件时,proc文件系统是动态从系统内核读…
迪卡算法求积(n * n) 使用 array.reduce 的方式实现 笛卡尔积算法 const arr = [ ['黑色', '白色', '蓝色'], ['1.2KG', '2.0KG', '3.0KG'], ['a', 'b'], ['aa', 'bb'] ]; function descartes(array){ if( array.length < 2 ) return array[0] || []; return array.reduce((pre, cur, index) => {…
/** * 中缀表达式转换成后缀表达式: 从输入(中缀表达式)中读取的字符,规则: 操作数: 写至输出 左括号: 推其入栈 右括号: 栈非空时重复以下步骤--> * 若项不为(,则写至输出: 若项为(,则推出循环 operator(opThis): 若栈为空,推opThis: 否则,重复--> * 弹出一项,若项为(,推其入栈: 若项为operator,且 若opTop<opThis,推入opTop,或 若opTop>=opThis,输出opTop, * 若opTop<opT…
案例1 >>> import pandas as pd >>> df=pd.DataFrame({'A':[1,2,3],'B':[1,2,3],'C':[1,2,3]}) >>> df A  B  C 0  1  1  1 1  2  2  2 2  3  3  3 >>> df.loc[:,['A','B']] A  B 0  1  1 1  2  2 2  3  3 案例2 #coding:utf-8 import sys im…
Elasticsearch是最近两年异军突起的一个兼有搜索引擎和NoSQL数据库功能的开源系统,基于Java/Lucene构建.最近研究了一下,感觉 Elasticsearch 的架构以及其开源的生态构建都有许多可借鉴之处,所以整理成文章分享下.本文的代码以及架构分析主要基于 Elasticsearch 2.X 最新稳定版. Elasticsearch 看名字就能大概了解下它是一个弹性的搜索引擎.首先弹性隐含的意思是分布式,单机系统是没法弹起来的,然后加上灵活的伸缩机制,就是这里的 Elasti…
Elasticsearch 的API 分为 REST Client API(http请求形式)以及 transportClient API两种.相比来说transportClient API效率更高,transportClient 是通过Elasticsearch内部RPC的形式进行请求的,连接可以是一个长连接,相当于是把客户端的请求当成 Elasticsearch 集群的一个节点.但是从Elasticsearch 7 后就会移除transportClient .主要原因是transportCl…